130 resultados para Accelerated environmental aging. Central hole. Fracture mechanics. Mechanical properties. Residual properties


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of pre-straining and bake hardening on the mechanical behaviour and microstructural changes were studied in two CMnSi TRansformation-Induced Plasticity (TRIP) steels with different microstructures after intercritical annealing. The TRIP steels before and after pre-straining and bake hardening were characterised by X-ray diffraction, optical microscopy, transmission electron microscopy, three dimensional atom probe and tensile tests. Both steels exhibited discontinuous yielding behaviour and a significant strength increase with some reduction in ductility after pre-straining and bake hardening treatment. The following main microstructural changes are responsible for the observed mechanical behaviours: a decrease in the volume fl:action of retained austenite, a increase in the dislocation density and the formation of cell substructure in the polygonal ferrite, higher localized dislocation density in the polygonal ferrite regions adjacent to martensite or retained austenite, and the precipitation of fine iron carbides in bainite and martensite. The mechanism for the observed yield point phenomenon in both steels after treatment was analysed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A solutionized Al2024 alloy was subjected to rolling at liquid nitrogen temperature (cryorolling) resulting in an ultra-fine stmcture. The material was also subjected to recovery annealing at 160°C. The ultrafine structured material demonstrated increased strength but very low ductility. The uniform elongation of the material after recovery annealing increased without any sacrifice of strength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aluminum particles (Al) were added to polypropylene (PP) in the presence of poly ethylene glycol (PEG) and polypropylene-graft-maleic anhydride to produce composites. The composites were then melt-spun into a mono filament and tested for tensile properties, diameter evenness and morphology. Melt rheological properties of Al/PP composites were studied in linear viscoelastic response regions. It was observed that level of dispersion of aluminum particles within a polypropylene composite fiber could be improved by incorporating polyethylene glycol. The improvement of dispersion led to an improvement in the fibers mechanical properties through a reduction of the coefficient of variation of fiber diameter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of hydrogen content on the compaction of Ti–6Al–4V powder at low temperatures, namely 500 °C, using equal channel angular pressing (ECAP) with back pressure has been investigated. The properties of the compacts before and after a heat treatment and de-hydrogenation cycle have been determined. Compaction of powder by ECAP (500 °C and 260 MPa) has shown maximum levels of relative density of 99.3% and 99.4% when charged with 0.05–0.1 wt.% and 0.61–0.85 wt.% of hydrogen, respectively. After the de-hydrogenation heat treatment the diffusion bonding between individual powder particles was completed and the microstructure was altered, depending on the level of hydrogen content. Two local maxima of 99.2% and 98.1% were observed in the measured density of consolidated compacts for hydrogen contents between 0.05 wt.% and 0.1 wt.% and between 0.61 wt.% and 0.85 wt.%, respectively. However, the mechanical properties of the compacts within these two ranges of hydrogen content were significantly different due to a difference in the observed microstructure. An exceptionally high ductility of 29%, in combination with a relatively high strength of ~560 MPa, was measured in a shear punch test on specimens which had a prior hydrogen level of 0.05 wt.% before the heat treatment. It was shown that material consolidated from powder hydrogenated to low levels of hydrogen before compaction has the potential to offer substantial improvements in mechanical properties after a suitable heat treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present paper the effect of grain refinement on the dynamic response of ultra fine-grained (UFG) structures for C–Mn and HSLA steels is investigated. A physically based flow stress model (Khan-Huang-Liang, KHL) was used to predict the mechanical response of steel structures over a wide range of strain rates and grain sizes. However, the comparison was restricted to the bcc ferrite structures. In previous work [K. Muszka, P.D. Hodgson, J. Majta, A physical based modeling approach for the dynamic behavior of ultra fine-grained structures, J. Mater. Process. Technol. 177 (2006) 456–460] it was shown that the KHL model has better accuracy for structures with a higher level of refinement (below 1 μm) compared to other flow stress models (e.g. Zerrili-Armstrong model). In the present paper, simulation results using the KHL model were compared with experiments. To provide a wide range of the experimental data, a complex thermomechanical processing was applied. The mechanical behavior of the steels was examined utilizing quasi-static tension and dynamic compression tests. The application of the different deformation histories enabled to obtain complex microstructure evolution that was reflected in the level of ferrite refinement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The strengthening mechanism responsible for the unique combination of ultimate tensile strength and elongation in a multiphase Fe-0.2C-1.5Mn-1.2Si-0.3Mo-0.6Al-0.02Nb (wt%) steel was studied. The microstructures with different volume fractions of polygonal ferrite, bainite and retained austenite were simulated by controlled thermomechanical processing. The interrupted tensile test was used to study the bainitic ferrite, retained austenite and polygonal ferrite behaviour as a function of plastic strain. X-ray analysis was used to characterise the volume fraction and carbon content of retained austenite. Transmission electron microscopy was utilised to analyse the effect of bainitic ferrite morphology on the strain induced transformation of retained austenite and retained austenite twinning as a function of strain in the bulk material. The study has shown that the austenite twinning mechanism is more preferable than the transformation induced plasticity (TRIP) mechanism during the early stages of deformation for a microstructure containing 15% polygonal ferrite, while the transformation induced plasticity effect is the main mechanism when there is 50% of polygonal ferrite in the microstructure. The bainitic ferrite morphology affects the deformation mode of retained austenite during straining. The polygonal ferrite behaviour during straining depends on dislocation substructure formed due to the deformation and the additional mobile dislocations caused by the TRIP effect. Operation of TRIP or twinning mechanisms depends not only on the chemical and mechanical stability of retained austenite, but also on the interaction of the phases during straining.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of pre-straining and bake hardening on the mechanical behaviour and microstructural changes were studied in two CMnSi TRansformation-Induced Plasticity (TRIP) steels with different microstructures after intercritical annealing. The TRIP steels before and after pre-straining and bake hardening were characterised by X-ray diffraction, optical microscopy, transmission electron microscopy, three dimensional atom probe and tensile tests. Both steels exhibited discontinuous yielding behaviour and a significant strength increase with some reduction in ductility after pre-straining and bake hardening treatment. The following main microstructural changes are responsible for the observed mechanical behaviours: a decrease in the volume fraction of retained austenite, an increase in the dislocation density and the formation of cell substructure in the polygonal ferrite, higher localized dislocation density in the polygonal ferrite regions adjacent to martensite or retained austenite, and the precipitation of fine iron carbides in bainite and martensite. The mechanism for the observed yield point phenomenon in both steels after treatment was analysed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes tensile properties of a peak-aged Mg-4Y·3RE alloy at room temperature to 823 K with 10-5 - 10-1 s-1. The Mg alloy exhibited high strength (> 250 MPa) at room temperature to 473 K. However. the strength rapidly decreased at 573 K. It is suggested that a large decrease in strength at 573 K is attributed to grain boundary sliding. Also, elongation increased rapidly at 723 - 823 K. This is likely to arise from the relatively high strain rate sensitivity of about 0.3 due to the glide-controlled dislocation creep.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanical properties of open-cellular magnesium alloys with three types of
geometric cell-structures, that is, a random round cell-structure (type A). a controlled diamond cell-structure for which the angle between the struts and the load direction is 45 degree (type B) and a controlled square cell-structure for which the angle between the struts and the loading direction is 0 degree (90 degree) (type C), are investigated by compressive tests. Results indicate that type C showed a higher collapse stress than the other two types. The collapse mechanism and the effects of the loading direction on collapse stress for the three types of magnesium alloys arc discussed from the viewpoint of bending, buckling and yielding of the struts. It is suggested that collapse for the open-cellular magnesium aHoys is associated with yielding of struts

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis examined the mechanical properties of natural fibre reinforced cementitious composite materials. The results have provided essential data for the design of these composite materials for different applications. The theoretical model developed also allows accurate prediction of composite behaviour under different loading conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the main aims of steel research for the automotive industry is to develop materials with the optimum combination of relevant properties, cost and productivity. The introduction of new TRansformation Induced Plasticity steels has been driven by the requirements to increase the ductility without compromising the strength. The main phenomenon responsible for the unique mechanical properties in these steels has been proposed to be the formation of multiphase structure, which can contribute to an increase in elongation during straining. The thesis studied the effect of the different alloying additions on the structure-property relationship in the TRIP steels.