60 resultados para underdetermined blind source separation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new approach for blind separation of unknown cyclostationary signals from instantaneous mixtures. The proposed method can perfectly separate the mixed source signals so long as they have either different cyclic frequencies or clock phases. This is a weaker condition than those required by the algorithms. The separation criterion is to diagonalize a polynomial matrix whose coefficient matrices consist of the correlation and cyclic correlation matrices, at time delay τ=0, of multiple measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies the problem of blind source separation (BSS) from instantaneous mixtures with the assumption that the source signals are mutually correlated.We propose a novel approach to BSS by using precoders in transmitters.We show that if the precoders are properly designed, some cross-correlation coefficients of the coded signals can be forced to be zero at certain time lags. Then, the unique correlation properties of the coded signals can be exploited in receiver to achieve source separation. Based on the proposed precoders, a subspace-based algorithm is derived for the blind separation of mutually correlated sources. The effectiveness of the algorithm is illustrated by simulation examples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we address the problem of blind separation of spatially correlated signals, which is encountered in some emerging applications, e.g., distributed wireless sensor networks and wireless surveillance systems. We preprocess the source signals in transmitters prior to transmission. Specifically, the source signals are first filtered by a set of properly designed precoders and then the coded signals are transmitted. On the receiving side, the Z-domain features of the precoders are exploited to separate the coded signals, from which the source signals are recovered. Based on the proposed precoders, a closed-form algorithm is derived to estimate the coded signals and the source signals. Unlike traditional blind source separation approaches, the proposed method does not require the source signals to be uncorrelated, sparse, or nonnegative. Compared with the existing precoder-based approach, the new method uses precoders with much lower order, which reduces the delay in data transmission and is easier to implement in practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a projection pursuit (PP) based method for blind separation of nonnegative sources. First, the available observation matrix is mapped to construct a new mixing model, in which the inaccessible source matrix is normalized to be column-sum-to-1. Then, the PP method is proposed to solve this new model, where the mixing matrix is estimated column by column through tracing the projections to the mapped observations in specified directions, which leads to the recovery of the sources. The proposed method is much faster than Chan's method, which has similar assumptions to ours, due to the usage of optimal projection. It is also more advantageous in separating cross-correlated sources than the independence- and uncorrelation-based methods, as it does not employ any statistical information of the sources. Furthermore, the new method does not require the mixing matrix to be nonnegative. Simulation results demonstrate the superior performance of our method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new approach to separate colored stationary signals mixed by convolutive channels. A cost function is proposed by employing linear constraint to the demixing vectors. The linear constraint is shown to be sufficient for avoiding trivial solution. The minimization of the cost function is performed using the Lagrangian method. Simulation results demonstrate the performance of the algorithm.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new approach to separate colored signals mixed by FIR (finite impulse response) and MIMO (multiple-input multiple-output) channels. A cost function is proposed by employing linear constrainit to the de mixing vectors. The linear constraint is shown to be sufficient for avoiding trivial solution. The minimization of the cost function is performed using the Lagrangian method. Simulation results demonstrate the performance of the algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This correspondence first shows that the global convergence analysis of the method proposed in the above paper is incomplete. Then we provide a counter example to show that the sufficient condition for global convergence is incorrect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extracting a signal of interest from available measurements is a challenging problem. One property which can be utilized to extract the signal is cyclostationarity, which exists in many signals. Various blind source separation methods based on cyclostationarity have been reported in the literature but they assume that the mixing system is instantaneous. In this paper, we propose a method for blind extraction of cyclostationary signal from convolutional mixtures. Given that the signal of interest has a unique cyclostationary frequency and the sensors are placed close to the concerned signal, we show that the signal of interest can be estimated from the measured data. Simulations results show the effectiveness of our method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we integrate two blind source separation (BSS) methods to estimate the individual channel state information (CSI) for the source-relay and relay-destination links of three-node two-hop multiple-input multiple-output (MIMO) relay systems. In particular, we propose a first-order Z-domain precoding technique for the blind estimation of the relay-destination channel matrix, while an algorithm based on the constant modulus and mutual information properties is developed to estimate the source-relay channel matrix. Compared with training-based MIMO relay channel estimation approaches, our algorithm has a better bandwidth efficiency as no bandwidth is wasted for sending the training sequences. Numerical examples are shown to demonstrate the performance of the proposed algorithm. © 2014 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose a blind channel estimation and signal retrieving algorithm for two-hop multiple-input multiple-output (MIMO) relay systems. This new algorithm integrates two blind source separation (BSS) methods to estimate the individual channel state information (CSI) of the source-relay and relay-destination links. In particular, a first-order Z-domain precoding technique is developed for the blind estimation of the relay-destination channel matrix, where the signals received at the relay node are pre-processed by a set of precoders before being transmitted to the destination node. With the estimated signals at the relay node, we propose an algorithm based on the constant modulus and signal mutual information properties to estimate the source-relay channel matrix. Compared with training-based MIMO relay channel estimation approaches, the proposed algorithm has a better bandwidth efficiency as no bandwidth is wasted for sending the training sequences. Numerical examples are shown to demonstrate the performance of the proposed algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Least square problem with l1 regularization has been proposed as a promising method for sparse signal reconstruction (e.g., basis pursuit de-noising and compressed sensing) and feature selection (e.g., the Lasso algorithm) in signal processing, statistics, and related fields. These problems can be cast as l1-regularized least-square program (LSP). In this paper, we propose a novel monotonic fixed point method to solve large-scale l1-regularized LSP. And we also prove the stability and convergence of the proposed method. Furthermore we generalize this method to least square matrix problem and apply it in nonnegative matrix factorization (NMF). The method is illustrated on sparse signal reconstruction, partner recognition and blind source separation problems, and the method tends to convergent faster and sparser than other l1-regularized algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

How to learn an over complete dictionary for sparse representations of image is an important topic in machine learning, sparse coding, blind source separation, etc. The so-called K-singular value decomposition (K-SVD) method [3] is powerful for this purpose, however, it is too time-consuming to apply. Recently, an adaptive orthogonal sparsifying transform (AOST) method has been developed to learn the dictionary that is faster. However, the corresponding coefficient matrix may not be as sparse as that of K-SVD. For solving this problem, in this paper, a non-orthogonal iterative match method is proposed to learn the dictionary. By using the approach of sequentially extracting columns of the stacked image blocks, the non-orthogonal atoms of the dictionary are learned adaptively, and the resultant coefficient matrix is sparser. Experiment results show that the proposed method can yield effective dictionaries and the resulting image representation is sparser than AOST.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To make the results reasonable, existing joint diagonalization algorithms have imposed a variety of constraints on diagonalizers. Actually, those constraints can be imposed uniformly by minimizing the condition number of diagonalizers. Motivated by this, the approximate joint diagonalization problem is reviewed as a multiobjective optimization problem for the first time. Based on this, a new algorithm for nonorthogonal joint diagonalization is developed. The new algorithm yields diagonalizers which not only minimize the diagonalization error but also have as small condition numbers as possible. Meanwhile, degenerate solutions are avoided strictly. Besides, the new algorithm imposes few restrictions on the target set of matrices to be diagonalized, which makes it widely applicable. Primary results on convergence are presented and we also show that, for exactly jointly diagonalizable sets, no local minima exist and the solutions are unique under mild conditions. Extensive numerical simulations illustrate the performance of the algorithm and provide comparison with other leading diagonalization methods. The practical use of our algorithm is shown for blind source separation (BSS) problems, especially when ill-conditioned mixing matrices are involved.