38 resultados para tin-oxide film


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, LaMO3 and LaNi0.5M0.5O3 (M = Ni, Co, Fe, Mn and Cr) perovskite oxide electrocatalysts were synthesized by a combined ethylenediaminetetraacetic acid-citrate complexation technique and subsequent calcinations at 1000 °C in air. Their powder X-ray diffraction patterns demonstrate the formation of a specific crystalline structure for each composition. The catalytic property of these materials toward the oxygen reduction reaction (ORR) was studied in alkaline potassium hydroxide solution using the rotating disk and rotating ring-disk electrode techniques. Carbon is considered to be a crucial additive component because its addition into perovskite oxide leads to optimized ORR current density. For LaMO3 (M = Ni, Co, Fe, Mn and Cr)), in terms of the ORR current densities, the performance is enhanced in the order of LaCrO3, LaFeO3, LaNiO3, LaMnO3, and LaCoO3. For LaNi0.5M0.5O3, the ORR current performance is enhanced in the order of LaNi0.5Fe0.5O3, LaNi0.5Co0.5O3, LaNi0.5Cr0.5O3, and LaNi0.5Mn0.5O3. Overall, LaCoO3 demonstrates the best performance. Most notably, substituting half of the nickel with cobalt, iron, manganese, or chromium translates the ORR to a more positive onset potential, suggesting the beneficial catalytic effect of two transition metal cations with Mn as the most promising candidate. Koutecky–Levich analysis on the ORR current densities of all compositions indicates that the four-electron pathway is favored on these oxides, which are consistent with hydroperoxide ion formation of <2%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, we report a facile method for preparing graphene oxide (GO) hybrid materials consisting of copper ions (Cu2+) complexed with GO, where Cu2+ acted as bridges connecting GO sheets. The method of film formation is based on cross-linking GO using Cu2+ followed by filtration onto nanoporous supports. This binding can be rationalized due to the chemical interaction between the functional groups on GO and the metal ion. We observed that there was a decrease in charge transfer resistance through electrochemical study. It suggests that the presence of metal ions in GO films could introduce new energy levels along the electron transport pathway and open up possible conduction channels. We also found that the hybrid graphene film assembled with Cu2+ dramatically decreases resistance through flash light reduction.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the fabrication and growth mechanism of net-shaped micropatterned self-organized thin-film TiO2 nanotube (TFTN) arrays on a silicon substrate are reported. Electrochemical anodization is used to grow the nanotubes from thin-film titanium sputtered on a silicon substrate with an average diameter of ?30 nm and a length of ?1.5 ?m using aqueous and organic-based types of electrolytes. The fabrication and growth mechanism of TFTN arrays from micropatterned three-dimensional isolated islands of sputtered titanium on a silicon substrate is demonstrated for the first time using focused-ion-beam (FIB) technique. This work demonstrates the use of the FIB technique as a simple, high-resolution, and maskless method for high-aspect-ratio etching for the creation of isolated islands and shows great promise toward the use of the proposed approach for the development of metal oxide nanostructured devices and their integration with micro- and nanosystems within silicon-based integrated-circuit devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Herein, we report a solid-state reduction process (in contrast to solution-based approach) by using an environmentally friendly reductant, such as vitamin C (denoted VC), to be directly employed to solid-state graphene oxide (GO) templates to give the highly active rGO architecture with a sheet resistance of as low as 10 Ω sq–1. In addition, predesigned rGO patterns/tracks with tunable resistivity can be directly “written” on a preprepared solid GO film via the inkjet-printing technique using VC/H2O as the printing-ink. This advanced reduction process allows foreign active materials to be preincorporated into the GO matrix to form quality active composite architectures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bi-functional oxygen electrodes are an enabling component for rechargeable metal-air batteries and regenerative fuel cells, both of which are regarded as the next-generation energy devices with zero emission. Nonetheless, at the present, no single metal oxide component can catalyze both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) with high performance which leads to large overpotential between ORR and OER. This work strives to address this limitation by studying the bi-functional electrocatalytic activity of the composite of a good ORR catalyst compound (e.g. palladium oxide, PdO) and a good OER catalyst compound (e.g. ruthenium oxide, RuO2) in alkaline solution (0.1M KOH) utilizing a thin-film rotating disk electrode technique. The studied compositions include PdO, RuO2, PdO/RuO2 (25wt.%/75wt.%), PdO/RuO2 (50wt.%/50wt.%) and PdO/RuO2 (75wt.%/25wt.%). The lowest overpotential (e.g. E (2 mA cm−2) - E (-2 mA cm−2)) of 0.82 V is obtained for PdO/RuO2 (25wt.%/75wt.%) (versus Ag|AgCl (3M NaCl) reference electrode).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Herein, a new graphene/Cu nanoparticle composite was prepared via the in situ reduction of GO in the presence of Cu nanoparticles which was then utilized as a sacrificing template for the formation of flexible and porous graphene capacitor electrodes by the dissolution of the intercalated Cu nanoparticle in a mixed solution of FeCl3 and HCl. The porous RGO electrode was characterized by atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). The as-prepared graphene/Cu nanoparticle composite and the pure graphene film after removal of Cu nanoparticles possessed high conductivity of 3.1 × 103 S m-1 and 436 S m-1 respectively. The porous RGO can be used as the electrode for the fabrication of supercapacitors with high gravimetric specific capacitances up to 146 F g-1, good rate capability and satisfactory electrochemical stability. This environmentally friendly and efficient approach to fabricating porous graphene nanostructures could have enormous potential applications in the field of energy storage and nanotechnology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemical vapor deposition (CVD) has recently been considered as the most reliable method to prepare high-quality monolayer graphene films, yet the as-grown graphene usually contains wrinkles and cracks or suffers from discontinuity. These defects can easily result in the shredding of large-sized graphene into small pieces even under a gentle disturbance. Herein, this work presents a cost-effective new method to produce high-quality GQDs by vigorous sonication of defective CVD graphene. The prepared GQDs can be easily and stably dispersed in organic solvents. Morphology and optical properties of the GQDs are investigated using a number of techniques. And we observed the as-prepared GQDs are highly homogeneous, mostly consisted of single-layered graphene, roughly round shapes less than 8 nm in a diameter, and exhibited a strong blue luminescence. Impressively, it is also confirmed that the as-obtained GQDs can act as a promising light absorption material for phototransistor with a hybrid film of GQDs and indium gallium zinc oxide (IGZO) as the channel layer. The GQD/IGZO phototransistor exhibited an appreciated photocurrent, which is 10 times larger than that of the IGZO one when exposed to 270 nm light.