82 resultados para swimming speed


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research investigates whether club head speed is a valid determinant of golfing performance and the effects of a golf-specific warm-up program on club-head speed in male golfers in the immediate and short term (five-week)

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spermatogenesis in the blue swimming crab, Portunus pelagicus, is described by light and electron microscopy. The testis is composed of anterior (AT) and posterior (PT) lobes, that are partitioned into lobules by connective tissue trabecula, and further divided into zones (germinal, transformation and evacuation), each with various stages of cellular differentiation. The vas deferens is classified into three distinct regions: anterior (AVD), median (MVD), and posterior (PVD), on the presence of spermatophores and two secretions, termed substance I and II. Based on the degree and patterns of heterochromatin, spermatogenesis is classified into 13 stages: two spermatogonia (SgA and SgB), six primary spermatocytes (leptotene, zygotene, pachytene, diplotene, diakinesis, and metaphase), a secondary spermatocyte (SSc), three spermatids (St 1–3), and a mature spermatozoon. Spermatid stages are differentiated by chromatin decondensation and the formation of an acrosomal complex, which is unique to brachyurans. Mature spermatozoa are aflagellated, and have a nuclear projection and a spherical acrosome. AUT-PAGE and Western blots show that, during chromatin decondensation, there is a reduction of most histones, with only small amounts of H2B and H3 remaining in mature spermatozoa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The data covers the speed at which passengers walk through Australian domestic airport terminals, based on their group size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anemophilous plants described as catapulting pollen explosively into the air have rarely attracted detailed examination. We investigated floral anthesis in a male mulberry tree with high-speed video and a force probe. The stamen was inflexed within the floral bud. Exposure to dry air initially resulted in a gradual movement of the stamen. This caused fine threads to tear at the stomium, ensuring dehiscence of the anther, and subsequently enabled the anther to slip off a restraining pistillode. The sudden release of stored elastic energy in the spring-like filament drove the stamen to straighten in less than 25 μs, and reflex the petals to velocities in excess of half the speed of sound. This is the fastest motion yet observed in biology, and approaches the theoretical physical limits for movements in plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Film thinning experiments have been conducted with aqueous films between two air phases in a thin film pressure balance. The films are free of added surfactant but simple NaCl electrolyte is added in some experiments. Initially the experiments begin with a comparatively large volume of water in a cylindrical capillary tube a few millimeters in diameter, and by withdrawing water from the center of the tube the two bounding menisci are drawn together at a prescribed rate. Thismodels two air bubbles approaching at a controlled speed. In pure water, the results show three regimes of behavior depending on the approach speed; at slow speed (<1 μm/s) it is possible to form a flat film of pure water, ∼100 nm thick, that is stabilized indefinitely by disjoining pressure due to repulsive double-layer interactions between naturally charged air/water interfaces. The data are consistent with a surface potential of -57mV on the bubble surfaces. At intermediate approach speed (∼1-150 μm/s), the films are transiently stable due to hydrodynamic drainage effects, and bubble coalescence is delayed by ∼10-100 s. At approach speeds greater than ∼150 μm/s, the hydrodynamic resistance appears to become negligible, and the bubbles coalesce without any measurable delay. Explanations for these observations are presented that take into account Derjaguin-Landau-Verwey-Overbeek and Marangoni effects entering through disjoining pressure, surface mobility, and hydrodynamic flow regimes in thin film drainage. In particular, it is argued that the dramatic reduction in hydrodynamic resistance is a transition from viscosity-controlled drainage to inertia-controlled drainage associated with a change from immobile to mobile air/water interfaces on increasing the speed of approach of two bubbles. A simple model is developed that accounts for the boundaries between different film stability or coalescence regimes. Predictions of the model are consistent with the data, and the effects of adding electrolyte can be explained. In particular, addition of electrolyte at high concentration inhibits the near-instantaneous coalescence phenomenon, thereby contributing to increased foam film stability at high approach speeds, as reported in previous literature. This work highlights the significance of bubble approach speed as well as electrolyte concentration in affecting bubble coalescence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In statistical classification work, one method of speeding up the process is to use only a small percentage of the total parameter set available. In this paper, we apply this technique both to the classification of malware and the identification of malware from a set combined with cleanware. In order to demonstrate the usefulness of our method, we use the same sets of malware and cleanware as in an earlier paper. Using the statistical technique Information Gain (IG), we reduce the set of features used in the experiment from 7,605 to just over 1,000. The best accuracy obtained in the former paper using 7,605 features is 97.3% for malware versus cleanware detection and 97.4% for malware family classification; on the reduced feature set, we obtain a (best) accuracy of 94.6% on the malware versus cleanware test and 94.5% on the malware classification test. An interesting feature of the new tests presented here is the reduction in false negative rates by a factor of about 1/3 when compared with the results of the earlier paper. In addition, the speed with which our tests run is reduced by a factor of approximately 3/5 from the times posted for the original paper. The small loss in accuracy and improved false negative rate along with significant improvement in speed indicate that feature reduction should be further pursued as a tool to prevent algorithms from becoming intractable due to too much data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel sensitive humidity nanosensor based on Na1-doped ZnO nanofiber membrane has been prepared via electrospinning and calcination. The product was characterized by scanning electron microscopy and X-ray diffraction. During the whole relative humidity (11%–95%) measurement, the response and recovery time is about 3 and 6 s, respectively, with good linearity, and reproducibility. These remarkable and sensitive sensing performances make our product a good candidate in fabricating humidity sensors.