34 resultados para soybean aphid


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Allergen absorption by epithelia may play an important role in downstream immune responses. Transport mechanisms that can bypass Peyer's patches include transcellular and paracellular transport. The capacity of an allergen to cross via these means can modulate downstream processing of the allergen by the immune system. The aim of this study was to investigate allergen-epithelial interactions of peanut allergens with the human intestinal epithelium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An experiment was conducted to assess the response of juvenile barramundi (Lates calcarifer) to four diets containing either marine- or non-marine derived neutral lipid (NL) or polar lipid (PL) sources for eight weeks in a 2 × 2 factorial design. The four diets contained 8.2% added lipid composed of a 1% fish oil base with 7.2% test lipid (n - 3 NL: Fish oil, n - 3 PL: Krill oil, n - 6 NL: Soybean oil, n - 6 PL: Soybean lecithin). The results demonstrated that the different lipid sources (either n - 3 or n - 6 omega series from either NL or PL class) had significant effects on growth performance and feed utilisation with some interaction terms noted. Growth was negatively affected in the n - 6 NL fish and the feed conversion (FCR) was highest in the n - 6 PL fish. Digestibility of total lipid and some specific fatty acids (notably 18:2n - 6 and 18:3n - 3) were also negatively affected in the n - 6 PL fish. Analysis of the whole body neutral lipid fatty acid composition showed that these mirrored those of the diets and significant interaction terms were noted. However, the whole body polar lipid fatty acids appeared to be more tightly regulated in comparison. The blood plasma biochemistry and hepatic transcription of several fatty acid metabolism genes in the n - 6 PL fed and to a lesser extent in the n - 6 NL fed fish demonstrated a pattern consistent with modified metabolic function. These results support that there are potential advantages in using phospholipid-rich oils however there are clear differences in terms of their origin. Statement of relevance: Juvenile barramundi may benefit from dietary phospholipid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The results of a recent increase in research interest directed at the inclusion of tallow in fish feed formulations are suggesting tallow is viable as a potential substitute for other alternative lipid sources such as poultry by-product oil. Although strong growth performance data has been shown, reservations still exist regarding reduced digestibility and the potential impacts this could have on performance over the duration of a grow-out period in low temperature conditions. Also little information is yet available on the potential effect of dietary tallow inclusion on final product quality. A large scale farm based study testing the inclusion of tallow at 40% inclusion, partially replacing poultry by-product oil, in commercial diets of Atlantic salmon over a winter grow-out period in southern Tasmania, Australia was conducted. Tallow inclusion had no impact on growth performance or nutrient digestibility. Tallow resulted in a slight improvement in fillet quality exhibiting a significant reduction in n - 6 PUFA and the n6:n3 ratio, and an increased n - 3LC-PUFA tissue deposition. Consumers were unable to display any preference in liking between 3 salmon products (cold smoked, hot smoked, and cooked) as a result of tallow inclusion. This study demonstrates the viability of partial inclusion of tallow in Atlantic salmon diets over a winter grow-out period. Statement of relevance: Improved knowledge of alternative dietary energy sources (oils and fats) to be used in aquafeed, (replacing the increasingly expensive, and diminishingly available, fish oil) is a key area of research towards improved environmental sustainability and economic viability of the aquaculture sector. Following a promising laboratory based, research scale, in vivo trial aimed at assessing the viability of tallow in salmon feed, a larger and longer duration farm-based trial was implemented to validate initial findings. Consumer test of final products (fresh-cooked, hot smoked and cold smoked fillets) showed no modification of sensorial attributes. Tallow is hereto shown to be a highly viable alternative oil for the salmon aquafeed industry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Legumes develop root nodules from pluripotent stem cells in the rootpericycle in response to mitogenic activation by a decorated chitin-likenodulation factor synthesized in Rhizobium bacteria. The soybean genes encoding the receptor for such signals were cloned using map-based cloning approaches. Pluripotent cells in the root pericycle and the outer or inner cortex undergo repeated cell divisions to initiate a composite nodule primordium that develops to a functional nitrogen-fixing nodule. The process itself is autoregulated, leading to the characteristic nodulation of the upper root system. Autoregulation of nodulation (AON) in all legumes is controlled in part by a leucine-rich repeat receptor kinase gene (GmNARK). Mutations of GmNARK, and its other legume orthologues, result in abundant nodulation caused by the loss of a yet-undefined negative nodulation repressor system. AON receptor kinases are involved in perception of a long distance, root-derived signal, to negatively control nodule proliferation. GmNARK and LjHAR1 are expressed in phloem parenchyma. GmNARK kinase domain interacts with Kinase Associated Protein Phosphatase (KAPP). NARK gene expression did not mirror biological NARK activity in nodulation control, as q-RT-PCR in soybean revealed high NARK expression in roots, root tips, leaves, petioles, stems and hypocotyls, while shoot and root apical meristems were devoid of NARK RNA. High through-put transcript analysis in soybean leaf and root indicated that major genes involved in JA synthesis or response are preferentially down-regulated in leaf but not root of wild type, but not NARK mutants, suggesting that AON signaling may in part be controlled by events relating to hormone metabolism. Ethylene and abscisic acid insensitive mutants of L. japonicus are described. Nodulation in legumes has significance to global economies and ecologies, as the nitrogen input into the biosphere allows food, feed and biofuel production without the inherent costs associated with nitrogen fertilization [1]. Nodulation involves the production of a new organ capable of nitrogen fixation [2] and as such is an excellent system to study plant – microbe interaction, plant development, long distance signaling and functional genomics of stem cell proliferation [3, 4]. Concerted international effort over the last 20 years, using a combination of induced mutagenesis followed by gene discovery (forward genetics), and molecular/biochemical approaches revealed a complex developmental pathway that ‘loans’ genetic programs from various sources and orchestrates these into a novel contribution. We report our laboratory’s contribution to the present analysis in the field.