47 resultados para protein metabolism


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The collective findings of this dissertation demonstrated little effect of exercise on the absolute or relative expression of glycogen regulatory proteins associated with a glycogen enriched fraction in human skeletal muscle. However the findings of this thesis help inform methodological approaches to future investigations into glycogen-protein associations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Murine milk protein gene expression requires insulin, hydrocortisone, and prolactin; however, the role of insulin is not well understood. This study, therefore, examined the requirement of insulin for milk protein synthesis. Mammary explants were cultured in various combinations of the lactogenic hormones and global changes in gene expression analysed using Affymetrix microarray. The expression of 164 genes was responsive to insulin, and 18 were involved in protein synthesis at the level of transcription and posttranscription, as well as amino acid uptake and metabolism. The folate receptor gene was increased by fivefold, highlighting a potentially important role for the hormone in folate metabolism, a process that is emerging to be central for protein synthesis. Interestingly, gene expression of two milk protein transcription factors, Stat5a and Elf5, previously identified as key components of prolactin signalling, both showed an essential requirement for insulin. Subsequent experiments in HCll cells confirmed that Stat5a and Elf5 gene expression could be induced in the absence of prolactin but in the presence of insulin. Whereas prolactin plays an essential role in phosphorylating and activating Stat5a, gene expression is only induced when insulin is present. This indicates insulin plays a crucial role in the transcription of the milk protein genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diabetes, obesity, and cancer affect upward of 15% of the world’s population. Interestingly, all three diseases juxtapose dysregulated intracellular signaling with altered metabolic state. Exactly which genetic factors define stable metabolic set points in vivo remains poorly understood. Here, we show that hedgehog signaling rewires cellular metabolism. We identify a cilium-dependent Smo-Ca2+-Ampk axis that triggers rapid Warburg-like metabolic reprogramming within minutes of activation and is required for proper metabolic selectivity and flexibility. We show that Smo modulators can uncouple the Smo-Ampk axis from canonical signaling and identify cyclopamine as one of a new class of “selective partial agonists,” capable of concomitant inhibition of canonical and activation of noncanonical hedgehog signaling. Intriguingly, activation of the Smo-Ampk axis in vivo drives robust insulin-independent glucose uptake in muscle and brown adipose tissue. These data identify multiple noncanonical endpoints that are pivotal for rational design of hedgehog modulators and provide a new therapeutic avenue for obesity and diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Caveolin-1 (CAV1) is a structural protein of caveolae involved in lipid homeostasis and endocytosis. Using newly generated pure Balb/C CAV1 null (Balb/CCAV1−/−) mice, CAV1−/− mice from Jackson Laboratories (JAXCAV1−/−), and CAV1−/− mice developed in the Kurzchalia Laboratory (KCAV1−/−), we show that under physiological conditions CAV1 expression in mouse tissues is necessary to guarantee an efficient progression of liver regeneration and mouse survival after partial hepatectomy. Absence of CAV1 in mouse tissues is compensated by the development of a carbohydrate-dependent anabolic adaptation. These results were supported by extracellular flux analysis of cellular glycolytic metabolism in CAV1-knockdown AML12 hepatocytes, suggesting cell autonomous effects of CAV1 loss in hepatic glycolysis. Unlike in KCAV1−/− livers, in JAXCAV1−/− livers CAV1 deficiency is compensated by activation of anabolic metabolism (pentose phosphate pathway and lipogenesis) allowing liver regeneration. Administration of 2-deoxy-glucose in JAXCAV1−/− mice indicated that liver regeneration in JAXCAV1−/− mice is strictly dependent on hepatic carbohydrate metabolism. Moreover, with the exception of regenerating JAXCAV1−/− livers, expression of CAV1 in mice is required for efficient hepatic lipid storage during fasting, liver regeneration, and diet-induced steatosis in the three CAV1−/− mouse strains. Furthermore, under these conditions CAV1 accumulates in the lipid droplet fraction in wildtype mouse hepatocytes. Conclusion: Our data demonstrate that lack of CAV1 alters hepatocyte energy metabolism homeostasis under physiological and pathological conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to determine the effects of high-glucose, high-fructose and high-sucrose diets on weight gain, liver lipid metabolism and gene expression of proteins involved with hepatic fat metabolism. Rats were fed a diet containing either 60% glucose, 60% fructose, 60% sucrose, or a standard chow for 28 days. Results indicated that high-fructose and high-sucrose diets were associated with higher mRNA levels of gene transcripts involved with fat synthesis; ACC, FAS and ChREBP, with no change in SREBP-1C mRNA. The protein level of ChREBP and SREBP1c was similar in liver homogenates from all groups, but were higher in nuclear fractions from the liver of high-fructose and high-sucrose fed rats. The mRNA level of gene transcripts involved with fat oxidation was the same in all three diets, whilst a high-fructose diet was associated with greater amount of mRNA of the fat transporter CD36. Despite the changes in mRNA of lipogenic proteins, the body weight of animals from each group was the same and the livers from rats fed high-fructose and high-sucrose diets did not contain more fat than control diet livers. In conclusion, changing the composition of the principal monosaccharide in the diet to a fructose containing sugar elicits changes in the level of hepatic mRNA of lipogenic and fat transport proteins and protein levels of their transcriptional regulators; however this is not associated with any changes in body weight or liver fat content.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitric oxide (NO) is an important vasodilator and regulator in the cardiovascular system, and this link was the subject of a Nobel prize in 1998. However, NO also plays many other regulatory roles, including thrombosis, immune function, neural activity, and gastrointestinal function. Low concentrations of NO are thought to have important signaling effects. In contrast, high concentrations of NO can interact with reactive oxygen species, causing damage to cells and cellular components.

A less-recognized site of NO production is within skeletal muscle, where small increases are thought to have beneficial effects such as regulating glucose uptake and possibly blood flow, but higher levels of production are thought to lead to deleterious effects such as an association with insulin resistance.

This review will discuss the role of NO in skeletal muscle during and following exercise, including in mitochondrial biogenesis, muscle efficiency, and blood flow with a particular focus on its potential role in regulating skeletal muscle glucose uptake during exercise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanisms facilitating increased skeletal muscle fat oxidation following prolonged, strenuous exercise remain poorly defined. The aim of this study was to examine the influence of plasma free fatty acid (FFA) availability on intramuscular malonyl-CoA concentration and the regulation of whole-body fat metabolism during a 6-h postexercise recovery period. Eight endurance-trained men performed three trials, consisting of 1.5 h high-intensity and exhaustive exercise, followed by infusion of saline, saline + nicotinic acid (NA; low FFA), or Intralipid and heparin [high FFA (HFA)]. Muscle biopsies were obtained at the end of exercise (0 h) and at 3 and 6 h in recovery. Ingestion of NA suppressed the postexercise plasma FFA concentration throughout recovery (P < 0.01), except at 4 h. The alteration of the availability of plasma FFA during recovery induced a significant increase in whole-body fat oxidation during the 6-h period for HFA (52.2 ± 4.8 g) relative to NA (38.4 ± 3.1 g; P < 0.05); however, this response was unrelated to changes in skeletal muscle malonyl-CoA and acetyl-CoA carboxylase (ACC)β phosphorylation, suggesting mechanisms other than phosphorylation-mediated changes in ACC activity may have a role in regulating fat metabolism in human skeletal muscle during postexercise recovery. Despite marked changes in plasma FFA availability, no significant changes in intramuscular triglyceride concentrations were detected. These data suggest that the regulation of postexercise skeletal muscle fat oxidation in humans involves factors other than the 5′AMP-activated protein kinase-ACCβ-malonyl-CoA signaling pathway, although malonyl-CoA-mediated regulation cannot be excluded completely in the acute recovery period.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While physical activity, energy restriction and weight loss are the cornerstone of type 2 diabetes management, less emphasis is placed on optimizing skeletal muscle mass. As muscle is the largest mass of insulin-sensitive tissue and the predominant reservoir for glucose disposal, there is a need to develop safe and effective evidence-based, lifestyle management strategies that optimize muscle mass as well as improve glycaemic control and cardiometabolic risk factors in people with this disease, particularly older adults who experience accelerated muscle loss.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Placentae and mammary epithelial cells are unusual in robustly expressing two copper "pumps", ATP7A and B, raising the question of their individual roles in these tissues in pregnancy and lactation. Confocal microscopic evidence locates ATP7A to the fetal side of syncytiotrophoblasts, suggesting a role in pumping Cu towards the fetus; and to the basolateral (blood) side of lactating mammary epithelial cells, suggesting a role in recycling Cu to the blood. We tested these concepts in wild-type C57BL6 mice and their transgenic counterparts that expressed hATP7A at levels 10-20× those of endogenous mAtp7a. In lactation, overexpression of ATP7A reduced the Cu concentrations of the mammary gland and milk ~50%. Rates of transfer of tracer (64)Cu to the suckling pups were similarly reduced over 30-48 h, as was the total Cu in 10-day -old pups. During the early and middle periods of gestation, the transgenic litters had higher Cu concentrations than the wild-type, placental Cu showing the reverse trend; but this difference was lost by the first postnatal day. The transgenic mice expressed ATP7A in some hepatocytes, so we investigated the possibility that metalation of ceruloplasmin (Cp) might be enhanced. Rates of (64)Cu incorporation into Cp, oxidase activity, and ratios of holo to apoceruloplasmin were unchanged. We conclude that in the lactating mammary gland, the role of ATP7A is to return Cu to the blood, while in the placenta it mediates Cu delivery to the fetus and is the rate-limiting step for fetal Cu nutrition during most of gestation in mice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: High-intensity short-duration interval training (HIT) stimulates functional and metabolic adaptation in skeletal muscle, but the influence of HIT on mitochondrial function remains poorly studied in humans. Mitochondrial metabolism as well as mitochondrial-associated protein expression were tested in untrained participants performing HIT over a 2-week period. METHODS: Eight males performed a single-leg cycling protocol (12 × 1 min intervals at 120% peak power output, 90 s recovery, 4 days/week). Muscle biopsies (vastus lateralis) were taken pre- and post-HIT. Mitochondrial respiration in permeabilized fibers, citrate synthase (CS) activity and protein expression of peroxisome proliferator-activated receptor gamma coactivator (PGC-1α) and respiratory complex components were measured. RESULTS: HIT training improved peak power and time to fatigue. Increases in absolute oxidative phosphorylation (OXPHOS) capacities and CS activity were observed, but not in the ratio of CCO to the electron transport system (CCO/ETS), the respiratory control ratios (RCR-1 and RCR-2) or mitochondrial-associated protein expression. Specific increases in OXPHOS flux were not apparent after normalization to CS, indicating that gross changes mainly resulted from increased mitochondrial mass. CONCLUSION: Over only 2 weeks HIT significantly increased mitochondrial function in skeletal muscle independently of detectable changes in mitochondrial-associated and mitogenic protein expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

 Liver steatosis is associated with the development of insulin resistance and the pathogenesis of type 2 diabetes. We tested the hypothesis that protein signals originating from steatotic hepatocytes communicate with other cells to modulate metabolic phenotypes. We show that the secreted factors from steatotic hepatocytes induce pro-inflammatory signaling and insulin resistance in cultured cells. Next, we identified 168 hepatokines, of which 32 were differentially secreted in steatotic versus non-steatotic hepatocytes. Targeted analysis showed that fetuin B was increased in humans with liver steatosis and patients with type 2 diabetes. Fetuin B impaired insulin action in myotubes and hepatocytes and caused glucose intolerance in mice. Silencing of fetuin B in obese mice improved glucose tolerance. We conclude that the protein secretory profile of hepatocytes is altered with steatosis and is linked to inflammation and insulin resistance. Therefore, preventing steatosis may limit the development of dysregulated glucose metabolism in settings of overnutrition. Meex et al. use proteomic approaches to identify steatosis as a factor that changes protein secretion in hepatocytes. Secreted factors from steatotic hepatocytes caused insulin resistance and inflammation. One secreted protein, fetuin B, was identified as a hepatokine that is increased in type 2 diabetes and causes impaired glucose metabolism.