60 resultados para primary motor cortex


Relevância:

100.00% 100.00%

Publicador:

Resumo:

 Objective: Neuroimaging and electrophysiological research have revealed a range of neural abnormalities in autism spectrum disorder (ASD), but a comprehensive understanding remains elusive. We utilized a novel methodology among individuals with ASD and matched controls, combining transcranial magnetic stimulation (TMS) with concurrent electroencephalogram (EEG) recording (TMS-EEG) to explore cortical function and connectivity in three sites implicated in the neuropathophysiology of ASD (dorsolateral prefrontal cortex, primary motor cortex, and temporoparietal junction). As there is evidence for neurobiological gender differences in ASD, we also examined the influence of biological sex.

Methods: TMS pulses were applied to each of the three sites (right lateralized) during 20-channel EEG recording.

Results: We did not identify any differences in the EEG response to TMS between ASD and control groups. This finding remained when data were stratified by sex. Nevertheless, traits and characteristics associated with ASD were correlated with the neurophysiological response to TMS.

Conclusion: While TMS-EEG did not appear to clarify the neuropathophysiology of ASD, the relationships identified between the neurophysiological response to TMS and clinical characteristics warrant further investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Parkinson's disease (PD) results from a loss of dopamine in the brain, leading to movement dysfunctions such as bradykinesia, postural instability, resting tremor and muscle rigidity. Furthermore, dopamine deficiency in PD has been shown to result in maladaptive plasticity of the primary motor cortex (M1). Progressive resistance training (PRT) is a popular intervention in PD that improves muscular strength and results in clinically significant improvements on the Unified Parkinson's Disease Rating Scale (UPDRS). In separate studies, the application of anodal transcranial direct current stimulation (a-tDCS) to the M1 has been shown to improve motor function in PD; however, the combined use of tDCS and PRT has not been investigated.

METHODS/DESIGN: We propose a 6-week, double-blind randomised controlled trial combining M1 tDCS and PRT of the lower body in participants (n = 42) with moderate PD (Hoehn and Yahr scale score 2-4). Supervised lower body PRT combined with functional balance tasks will be performed three times per week with concurrent a-tDCS delivered at 2 mA for 20 minutes (a-tDCS group) or with sham tDCS (sham group). Control participants will receive standard care (control group). Outcome measures will include functional strength, gait speed and variability, balance, neurophysiological function at rest and during movement execution, and the UPDRS motor subscale, measured at baseline, 3 weeks (during), 6 weeks (post), and 9 weeks (retention). Ethical approval has been granted by the Deakin University Human Research Ethics Committee (project number 2015-014), and the trial has been registered with the Australian New Zealand Clinical Trials Registry (ACTRN12615001241527).

DISCUSSION: This will be the first randomised controlled trial to combine PRT and a-tDCS targeting balance and gait in people with PD. The study will elucidate the functional, clinical and neurophysiological outcomes of combined PRT and a-tDCS. It is hypothesised that combined PRT and a-tDCS will significantly improve lower limb strength, postural sway, gait speed and stride variability compared with PRT with sham tDCS. Further, we hypothesise that pre-frontal cortex activation during dual-task cognitive and gait/balance activities will be reduced, and that M1 excitability and inhibition will be augmented, following the combined PRT and a-tDCS intervention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research is being conducted on the use of transcranial direct current stimulation (tDCS) for therapeutic effects, and also on the mechanisms through which such therapeutic effects are mediated. A bottleneck in the progress of the research has been the large size of the existing tDCS systems which prevents subjects from performing their daily activities. To help research into the principles, mechanisms, and benefits of tDCS, reduction of size and weight, improvement in simplicity and user friendliness, portability, and programmability of tDCS systems are vital. This paper presents a design for a low-cost, light-weight, programmable, and portable tDCS device. The device is head-mountable and can be concealed in a hat and worn on the head by the subject while receiving the stimulation. The strength of the direct current stimulation can be selected through a simple user interface. The device is constructed and its performance evaluated through bench and in vivo tests. The tests validated the operation of the device in inducing neuromodulatory changes in primary motor cortex, M1, through measuring excitability of dominant M1 of resting right first dorsal interosseus muscle by transcranial magnetic stimulation induced motor evoked potentials. It was observed that the tDCS device induced comparable neuromodulatory effects in M1 as the existing bulky tDCS systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motor imagery and actual movement engage similar neural structures, however, whether they produce similar training-related corticospinal adaptations has yet to be established. The aim of this study was to compare changes in strength and corticospinal excitability following short-term motor imagery strength training and short-term strength training. Transcranial magnetic stimulation (TMS) was applied over the contralateral motor cortex (M1) to elicit motor-evoked potentials in the dominant biceps brachii muscle prior to and following 3-week strength training using actual bicep curls or motor imagery of bicep curls. The strength training (n = 6) and motor imagery (n = 6) groups underwent three supervised training sessions per week for 3 weeks. Participants completed four sets of six to eight repetitions (actual or imagined) at a training load of 80% of their one-repetition maximum. The control group (n = 6) were required to maintain their current level of physical activity. Both training groups exhibited large performance gains in strength (p < 0.001; strength training 39% improvement, imagery 16% improvement), which were significantly different between groups (p = 0.027). TMS revealed that the performance improvements observed in both imagery and strength training were accompanied by increases in corticospinal excitability (p < 0.001), however, these differences were not significantly different between groups (p = 0.920). Our findings suggest that both strength training and motor imagery training utilised similar neural substrates within the primary M1, however, strength training resulted in greater gains in strength than motor imagery strength training. This difference in strength increases may be attributed to adaptations during strength training that are not confined to the primary M1. These findings have theoretical implications for functional equivalent views of motor imagery as well as important therapeutic implications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this preliminary study was to investigate motor cortex (cortical) excitability between a similar fine visuomotor task of varying difficulty. Ten healthy adults (three female, seven male; 20–45 years of age) participated in the study. Participants were instructed to perform a fine visuomotor task by statically abducting their first index finger against a force transducer which displayed the level of force (represented as a marker) on a computer monitor. This marker was to be maintained between two stationary bars, also displayed on the computer monitor. The level of difficulty was increased by amplifying the position of the marker, making the task more difficult to control. Cortical measures of motor evoked potential (MEP) and silent period (SP) duration in first dorsal interosseous (FDI) muscle were obtained using transcranial magnetic stimulation (TMS) while the participant maintained the “easy” or “difficult” static task. An 11.8% increase in MEP amplitude was observed when subjects undertook the “difficult” task, but no differences in MEP latency or SP duration. The results from this preliminary study suggest that cortical excitability increases reflect the demand required to perform tasks requiring greater precision with suggestions for further research discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Increased attentional demand has been shown to reduce motor performance, leading to increases in accidents, particularly in elderly populations. While these deficits have been well documented behaviorally, their cortical correlates are less well known. Increased attention has been shown to affect activity in prefrontal regions of the cortex. However there have been varying results within past research investigating corticomotor regions, mediating motor performance. This mini-review initially discusses past behavioral research, before moving to studies investigating corticomotor areas in response to changes in attention. Recent dual task studies have revealed a possible decline in the ability of older, but not younger, adults to activate inhibitory processes within the motor cortex, which may be correlated with poor motor performance, and thus accidents. A reduction in cortical inhibition may be caused by neurodegeneration within prefrontal regions of the cortex with age, rendering older adults less able to allocate attention to corticomotor regions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Neuroimaging studies have shown neuromuscular electrical stimulation (NMES)-evoked movements activate regions of the cortical sensorimotor network, including the primary sensorimotor cortex (SMC), premotor cortex (PMC), supplementary motor area (SMA), and secondary somatosensory area (S2), as well as regions of the prefrontal cortex (PFC) known to be involved in pain processing. The aim of this study, on nine healthy subjects, was to compare the cortical network activation profile and pain ratings during NMES of the right forearm wrist extensor muscles at increasing current intensities up to and slightly over the individual maximal tolerated intensity (MTI), and with reference to voluntary (VOL) wrist extension movements. By exploiting the capability of the multi-channel time domain functional near-infrared spectroscopy technique to relate depth information to the photon time-of-flight, the cortical and superficial oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin concentrations were estimated. The O2Hb and HHb maps obtained using the General Linear Model (NIRS-SPM) analysis method, showed that the VOL and NMES-evoked movements significantly increased activation (i.e., increase in O2Hb and corresponding decrease in HHb) in the cortical layer of the contralateral sensorimotor network (SMC, PMC/SMA, and S2). However, the level and area of contralateral sensorimotor network (including PFC) activation was significantly greater for NMES than VOL. Furthermore, there was greater bilateral sensorimotor network activation with the high NMES current intensities which corresponded with increased pain ratings. In conclusion, our findings suggest that greater bilateral sensorimotor network activation profile with high NMES current intensities could be in part attributable to increased attentional/pain processing and to increased bilateral sensorimotor integration in these cortical regions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The human central nervous system (CNS) has the ability to modulate its activity during the performance of different movements. Recent evidence, however, suggests that the CNS can also modulate its activity in the same movement but with increased precision during a visuomotor static task. This study aimed to extend on these findings by using transcranial magnetic stimulation (TMS) to measure the CNS during the performance of two visuomotor dynamic tasks. Twelve volunteers participated in this study, performing two separate motor tasks. Study I (“Position Tracking”) involved participants to perform a visuomotor tracking task using a dial potentiometer and matching their response icon to the computer generated tracking icon whilst holding a pincer grip. Study II (“Force Tracking”) involved participants to perform a similar visuomotor tracking task by applying or releasing pressure against a fixed force transducer. Tasks were conducted at two speeds (“slow” being one tracking cycle in 10 s; and “fast” being two tracking cycles in 10 s) and compared to a visuomotor static task at a similar muscle contraction level. Results showed corticospinal changes with significant increases (p = 0.002) in excitability demonstrated during Study I (42.3 ± 16.8%) and Study II (56.3 ± 34.2%) slow speed tasks. Moreover, significant reduction in corticospinal inhibition was also observed during both tracking tasks at slow (59.3 ± 13.7%; p = 0.001) and fast speeds (31.9 ± 12.3%; p = 0.001). The findings may provide information on the underlying physiology during the early stages of motor skill acquisition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Object  In a companion study, the authors describe the development of a new instrument named the Wireless Instantaneous Neurotransmitter Concentration System (WINCS), which couples digital telemetry with fast-scan cyclic voltammetry (FSCV) to measure extracellular concentrations of dopamine. In the present study, the authors describe the extended capability of the WINCS to use fixed potential amperometry (FPA) to measure extracellular concentrations of dopamine, as well as glutamate and adenosine. Compared with other electrochemical techniques such as FSCV or high-speed chronoamperometry, FPA offers superior temporal resolution and, in combination with enzyme-linked biosensors, the potential to monitor nonelectroactive analytes in real time.

Methods  The WINCS design incorporated a transimpedance amplifier with associated analog circuitry for FPA; a microprocessor; a Bluetooth transceiver; and a single, battery-powered, multilayer, printed circuit board. The WINCS was tested with 3 distinct recording electrodes: 1) a carbon-fiber microelectrode (CFM) to measure dopamine; 2) a glutamate oxidase enzyme–linked electrode to measure glutamate; and 3) a multiple enzyme–linked electrode (adenosine deaminase, nucleoside phosphorylase, and xanthine oxidase) to measure adenosine. Proof-of-principle analyses included noise assessments and in vitro and in vivo measurements that were compared with similar analyses by using a commercial hardwired electrochemical system (EA161 Picostat, eDAQ; Pty Ltd). In urethane-anesthetized rats, dopamine release was monitored in the striatum following deep brain stimulation (DBS) of ascending dopaminergic fibers in the medial forebrain bundle (MFB). In separate rat experiments, DBS-evoked adenosine release was monitored in the ventrolateral thalamus. To test the WINCS in an operating room setting resembling human neurosurgery, cortical glutamate release in response to motor cortex stimulation (MCS) was monitored using a large-mammal animal model, the pig.

Results   The WINCS, which is designed in compliance with FDA-recognized consensus standards for medical electrical device safety, successfully measured dopamine, glutamate, and adenosine, both in vitro and in vivo. The WINCS detected striatal dopamine release at the implanted CFM during DBS of the MFB. The DBS-evoked adenosine release in the rat thalamus and MCS-evoked glutamate release in the pig cortex were also successfully measured. Overall, in vitro and in vivo testing demonstrated signals comparable to a commercial hardwired electrochemical system for FPA.

Conclusions  By incorporating FPA, the chemical repertoire of WINCS-measurable neurotransmitters is expanded to include glutamate and other nonelectroactive species for which the evolving field of enzyme-linked biosensors exists. Because many neurotransmitters are not electrochemically active, FPA in combination with enzyme-linked microelectrodes represents a powerful intraoperative tool for rapid and selective neurochemical sampling in important anatomical targets during functional neurosurgery.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study investigated corticomotor excitability and inhibition, cognitive functioning, and fine motor dexterity in retired elite and amateur Australian football (AF) players who had sustained concussions during their playing careers. Forty male AF players who played at the elite level (n=20; mean age 49.7±5.7 years) or amateur level (n=20; mean age 48.4±6.9 years), and had sustained on average 3.2 concussions 21.9 years previously, were compared with 20 healthy age-matched male controls (mean age 47.56±6.85 years). All participants completed assessments of fine dexterity, visuomotor reaction time, spatial working memory (SWM), and associative learning (AL). Transcranial magnetic stimulation (TMS) was used to measure corticospinal excitability: stimulus-response (SR) curves and motor evoked potential (MEP) 125% of active motor threshold (aMT); and intracortical inhibition: cortical silent period (cSP), short-interval intracortical inhibition (SICI), and long-interval intracortical inhibition (LICI). Healthy participants performed better in dexterity (p=0.003), reaction (p=0.003), and movement time (p=0.037) than did both AF groups. Differences between AF groups were found in AL (p=0.027) and SWM (p=0.024). TMS measures revealed that both AF groups showed reduced cSP duration at 125% aMT (p>0.001) and differences in SR curves (p>0.001) than did healthy controls. Similarly, SICI (p=0.012) and LICI (p=0.009) were reduced in both AF groups compared with controls. Regression analyses revealed a significant contribution to differences in motor outcomes with the three measures of intracortical inhibition. The measures of inhibition differed, however, in terms of which performance measure they had a significant and unique predictive relationship with, reflecting the variety of participant concussion injuries. This study is the first to demonstrate differences in motor control and intracortical inhibition in AF players who had sustained concussions during their playing career two decades previously.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Summary - Vitamin D can improve muscle function and reduce falls, but whether it can strengthen neural connections within the brain and nervous system is not known. This 10-week randomised controlled trial indicates that treatment with 2,000 IU/day vitamin D3 does not significantly alter neuroplasticity relative to placebo in older adults.
Introduction - The purpose of this study was to examine the effects of vitamin D supplementation on neuroplasticity, serum brain-derived neurotrophic factor (BDNF) and muscle strength and function in older adults.
Methods - This was a 10-week double-blinded, placebo-controlled randomised trial in which 26 older adults with 25-hydroxyvitamin D [25OHD] concentrations 25–60 nmol/L were randomised to 2,000 IU/day vitamin D3 or matched placebo. Single- and paired-pulse transcranial magnetic stimulation applied over the motor cortex was used to assess changes in motor-evoked potentials (MEPs) and short-interval intracortical inhibition (SICI), as measures of corticospinal excitability and inhibition respectively, by recording electromyography (EMG) responses to stimulation from the wrist extensors. Changes in muscle strength, stair climbing power, gait (timed-up-and-go), dynamic balance (four square step test), serum 25(OH)D and BDNF concentrations were also measured.
Results - After 10 weeks, mean 25(OH)D levels increased from 46 to 81 nmol/L in the vitamin D group with no change in the placebo group. The vitamin D group experienced a significant 8–11 % increase in muscle strength and a reduction in cortical excitability (MEP amplitude) and SICI relative to baseline (all P < 0.05), but these changes were not significantly different from placebo. There was no effect of vitamin D on muscle power, function or BDNF.
Conclusions - Daily supplementation with 2,000 IU vitamin D3 for 10 weeks had no significant effect on neuroplasticity compared to placebo, but the finding that vitamin D treatment alone was associated with a decrease in corticospinal excitability and intracortical inhibition warrants further investigation as this suggests that it may improve the efficacy of neural transmission within the corticospinal pathway.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There have been inconsistencies in the literature regarding asymmetrical neural control and results of experiments using TMS techniques. Therefore, the aim of this study was to further our understanding of the neural relationships that may underlie performance asymmetry with respect to the distal muscles of the hand using a TMS stimulus–response curve technique. Twenty-four male subjects (12 right handed, 12 left handed) participated in a TMS stimulus–response (S–R) curve trial. Focal TMS was applied over the motor cortex to find the optimal position for the first dorsal interossei muscle and to determine rest threshold (RTh). Seven TMS intensities ranging from 90 to 150 % of RTh were delivered in 10 % increments. One single TMS block consisted of 16 stimuli at each intensity. Peak-to-peak amplitudes were measured and the S–R curve generated. In right-handed subjects, the mean difference in slopes between the right and left hand was −0.011 ± 0.03, while the mean difference between hands in left-handed subjects was −0.049 ± 0.08. Left-handed normalized data in right handers displayed a mean of 1.616 ± 1.019 (two-tailed t test p < 0.05). The left-handed group showed a significant change in the normalized slope as indicated by a mean of 1.693 ± 0.149 (two-tailed t test p < 0.00006). The results found in this study reinforce previous work which suggests that there is an asymmetry in neural drive that exists in both left- and right-handed individuals. However, the results show that the non-dominant motor hemisphere displays a greater amount of excitability than the dominant, which goes against the conventional dogma. This asymmetry indicates that the non-dominant hemisphere may have a higher level of excitation or a lower level of inhibition for both groups of participants.