130 resultados para plastic thatch manufacture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

High proton conductivity has been achieved in the high temperature plastic crystal phase of pentaglycerine when doped with strong acids, including trifluoromethanesulfonic acid (triflic acid) and methanesulfonic acid. The solid–solid phase transition from the ordered to plastic phase in this material occurs at 86 °C and conductivities of 10− 3 S/cm were measured in the high temperature plastic phase on the addition of 1 mol% triflic acid. In the case of methanesulfonic acid, the conductivities showed a greater dependence on acid concentration and were lower than for triflic acid, as expected on the basis of acid strengths. Electrochemical characterisation shows a clear hydrogen reduction process indicating that the proton is the mobile species in the plastic phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Doping of lithium salts and acids into the plastic crystal phase of succinonitrile has shown for the first time of the possibility of creating solid state electrolytes based on plastic crystalline solvents where the matrix itself is neutral and hence not intrinsically conductive. These materials illustrate the concept of a solid state electrolyte solvent. Room temperature conductivities up to 3.4×10−4 S cm−1 were obtained with 5 wt.% lithium bis(trifluoromethanesulfonylamide) in succinonitrile. Pulsed field gradient NMR measurements indicate that both cation and anion are mobile in this lattice. Proton conductivity was also observed when methane sulfonic acid or glacial acetic acid was used as dopants, however, the conductivity in these systems is limited by the poor dissociating ability of these acids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plastic crystal materials have long been known but have only relatively recently become of interest as solid–state ion conductors. Their properties are often associated with dynamic orientational disorder or rotator motions in the crystalline lattice. This paper describes recent work in the field including the range of organic ionic compounds that exhibit ion conduction at room temperature. Conductivity in some cases is high enough to render the compounds of interest as electrolyte materials in all solid state electrochemical devices. Doping of the plastic crystal phase with a small ion such as Li+ in some cases produces an even higher conductivity. In this case the plastic crystal acts as a solid state “solvent” for the doped ion and supports the conductive motion of the dopant via motions of the matrix ions. These doped materials are also described in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rechargeable lithium batteries have long been considered an attractive alternative power source for a wide variety of applications. Safety and stability1 concerns associated with solvent-based electrolytes has necessitated the use of lithium intercalation materials (rather than lithium metal) as anodes, which decreases the energy storage capacity per unit mass. The use of solid lithium ion conductors - based on glasses, ceramics or polymers - as the electrolyte would potentially improve the stability of a lithium metal anode while alleviating the safety concerns. Glasses and ceramics conduct via a fast ion mechanism, in which the lithium ions move within an essentially static framework. In contrast, the motion of ions in polymer systems is similar to that in solvent-based electrolytes - motion is mediated by the dynamics of the host polymer, thereby restricting the conductivity to relatively low values. Moreover, in the polymer systems, the motion of the lithium ions provides only a small fraction of the overall conductivity2, which results in severe concentration gradients during cell operation, causing premature failure3. Here we describe a class of materials, prepared by doping lithium ions into a plastic crystalline matrix, that exhibit fast lithium ion motion due to rotational disorder and the existence of vacancies in the lattice. The combination of possible structural variations of the plastic crystal matrix and conductivities as high as 2 3 1024 S cm21 at 60 8C make these materials very attractive for secondary battery applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of novel organic ionic compounds based on the pyrrolidinium cation are described which have been found to be ion conductors in their solid states around room temperature. The properties of the compounds are consistent with their exhibiting plastic crystal phases. In order to understand some of the molecular origins of the plastic crystal behaviour and the ion conductivity that it promotes, a number of related compounds based on the imidazolium and ammonium cations are also described which have structural elements in common with the pyrrolidinium cation, but which do not show the plastic behaviour. It is found therefore that the nature of the cation is quite critical to the development of this behaviour. The alkyl methyl pyrrolidinium cation is found to produce plastic crystal phases when the alkyl chains are short, thereby preserving the ability of the cation to rotate with minimal steric hindrance. The ammonium and imidazolium cations of comparable size and structure are less able to produce these plastic phases, in many cases because the low temperature phase proceeds to melt rather than forming a stable rotator phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new family of molten salts is reported, based on the N-alkyl, N-alkyl pyrrolidinium cation and the bis(trifluoromethane sulfonyl)imide anion. Some of the members of the family are molten at room temperature, while the smaller and more symmetrical members have melting points around 100 °C. Of the room-temperature molten salt examples, the methyl butyl derivative exhibits the highest conductivity; at 2 × 10-3 S/cm this is the highest molten salt conductivity observed to date at room temperature among the ammonium salts. This highly conductive behavior is rationalized in terms of the role of cation planarity. The salts also exhibit multiple crystalline phase behavior below their melting points and exhibit significant conductivity in at least their higher temperature crystal phase. For example, the methyl propyl derivative (mp = 12 °C) shows ion conductivity of 1 × 10-6 S/cm at 0 °C in its higher temperature crystalline phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The treatment of an organic ionic plastic crystal electrolyte N-methyl-N-ethylpyrrolidinium tetrafluoroborate (P1,2BF4) with supercritical CO2 resulted in a substantial increase in ionic conductivity, especially in the more highly ordered solid phases of the material, and also stabilised the most ordered phase to lower temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal and mechanical properties of the ionic plastic crystal N-methyl-N-propylpyrrolidinium hexafluorophosphate have been investigated and the effect of adding a miscible polymer on the mechanical properties is reported. The physical properties of the pure plastic crystal are discussed in detail and for the first time the change in volume with temperature for an organic ionic plastic crystal is reported. An increase in volume in conjunction with increased conductivity supports the hypothesis that ion conduction within the plastic crystal proceeds via defects. For phase I and melting, the magnitude of the volume increase does not appear to be in accord with the subtle change in conductivity. This is suggested to be due to the presence of layer defects, which allow for correlated ionic motion, which does not increase the conductivity. Addition of polymer to the plastic crystal significantly increases the mechanical strength, decreases the conductivity, but has little effect on the phase behaviour, further supporting the hypothesis of vacancy-mediated conduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

N,N,N,N-Tetramethylammonium dicyanamide (Me4NDCA) has been examined via differential scanning calorimetry (DSC), thermogravimetric analysis, conductivity, single crystal X-ray diffraction and 1H nuclear magnetic resonance (NMR) analyses, and was found to be highly conductive in the solid state (σ =10−3 S cm−2 at 420 K) and to also exhibit unusual plastic crystal behaviour. To investigate the correlation between such behaviour and the occurrence of molecular rotations in the crystal, 1H NMR second moment measurements are compared with calculated values predicted from the crystal structure. While DSC analysis indicates a number of solid–solid transitions at ambient temperatures, subsequent 1H NMR analysis of the Me4N+ cation shows that a variety of rotational motions become active at low (<240 K) temperatures, and that such transitions in rotational states occur over a range of temperatures rather than in a sharp transition. Conductivity analysis reveals that between 320 K and 420 K the conductivity increases by more than six orders of magnitude in the solid state, in line with the transition of the Me4N+ cation to a diffusive state, and that other phase transitions observed in this temperature range have no marked effect on the conductivity. Conduction in this solid state is therefore envisaged to involve a vacancy-diffusion model, involving Me4N+ cation vacancies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High conductivity in solid-state electrolytes is a critical requirement for many advanced energy and other electrochemical applications. Plastic crystalline materials have shown promise in this regard, and the inclusion of nanosized inorganic particles in both amorphous and crystalline materials has indicated order of magnitude enhancements in ion transport induced by space charge or other defect enhancement. In this paper we present conductivity enhancements in the plastic crystal N,N‘-ethylmethylpyrrolidinium bis(trifluoromethanesulfonyl)amide ([C2mpyr][NTf2]) induced by nanosized SiO2 particles. The addition of the nanoparticles dramatically increases plasticity and ion mobility. Positron annihilation lifetime spectroscopy (PALS) measurements indicate an increase in mean defect size and defect concentration as a result of nanoparticle inclusion. The scaling of the conductivity with size suggests that a “trivial space charge” effect is operable, although a strain induced enhancement of defects (in particular extended defects) is also likely given the observed increase in plasticity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Doping lithium bis(trifluoromethanesulfonyl)amide (Li[NTf2]) into the N-ethyl,N′-methylpyrrolidinium bis(trifluoromethanesulfonyl)amide ([C2mpyr][NTf2]) plastic crystal material has previously indicated order of magnitude enhancements in ion transport and conductivity over pure [C2mpyr][NTf2]. Recently, conductivity enhancements in this ionic plastic crystal induced by SiO2 nanoparticles have also been reported. In this work the inclusion of SiO2 nanoparticles in Li ion doped [C2mpyr][NTf2] has been investigated over a wide temperature range by differential scanning calorimetry (DSC), impedance spectroscopy, positron annihilation lifetime spectroscopy (PALS), Raman spectroscopy, NMR spectroscopy and scanning electron microscopy (SEM). Solid state 1H NMR indicates that the addition of the nanoparticles increases the mobility of the [C2mpyr] cation and positron lifetime spectroscopy (PALS) measurements indicate an increase in mean defect size and defect concentration as a result of nanoparticle inclusion, especially with 10 wt% SiO2. Thus, the substantial drop in ion conductivity observed for this doped nanocomposite material was surprising. This decrease is most likely due to the decrease in mobility of the [NTf2] anion, possibly by its adsorption at the SiO2/grain boundary interface and concomitant decrease in mobility of the Li ion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Characterization of a new family of salts, based on a number of 1-alkyl-2-methyl pyrrolinium cations and the bis(trifluoromethane sulfonyl) amide anion (TFSA), is presented. From the thermal analysis, conductivity and X-ray diffraction (XRD) measurements, at least one of the compounds of the family, 1-ethyl-2-methyl pyrrolinium TFSA, was found to exhibit plastic crystal phases before melting and to exhibit high conductivity in the solid state (1×10−4 S cm−1 at 25 °C). This plastic crystal behaviour is discussed in comparison with other members of this pyrrolinium salt family.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Doping the molecular plastic crystal of succinonitrile with solid N-methyl-N-butylpyrrolidinium iodide salt and iodine has produced a highly conductive solid iodide/triiodide conductor. Furthermore, it was employed for a highly efficient, all-solid-state dye-sensitized solar cell.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Choline dihydrogen phosphate ([N1.1.1.2OH]DHP) and 1-butyl-3-methylimidazolium dihydrogen phosphate ([C4mim]DHP) were synthesized as a new class of proton-conducting ionic plastic crystals. Both [N1.1.1.2OH]DHP and [C4mim]DHP showed solid–solid phase transition(s) and showed a final entropy of fusion lower than 20 J K−1 mol−1 which is consistent with Timmerman’s criterion for molecular plastic crystals. The ionic conductivity of [N1.1.1.2OH]DHP was in the range of 10−6 S cm−1–10−3 S cm−1 in the plastic crystalline phase. On the other hand, the ionic conductivity of [C4mim]DHP showed about 10−5 S cm−1 in the plastic crystalline phase. [N1.1.1.2OH]DHP showed one order of magnitude higher ionic conductivity than [C4mim]DHP in the temperature range where the plastic phase is stable.