51 resultados para phase structure


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chromatographic capacity factors (log k‘) for 32 structurally diverse drugs were determined by high performance liquid chromatography (HPLC) on a stationary phase composed of phospholipids, the so-called immobilized artificial membrane (IAM). In addition, quantitative structure-retention relationships (QSRR) were developed in order to explain the dependence of retention on the chemical structure of the neutral, acidic, and basic drugs considered in this study. The obtained retention data were modeled by means of multiple regression analysis (MLR) and partial least squares (PLS) techniques. The structures of the compounds under study were characterized by means of calculated physicochemical properties and several nonempirical descriptors. For the carboxylic compounds included in the analysis, the obtained results suggest that the IAM-retention is governed by hydrophobicity factors followed by electronic effects due to polarizability in second place. Further, from the analysis of the results obtained of two developed quantitative structure-permeability studies for 20 miscellaneous carboxylic compounds, it may be concluded that the balance between polarizability and hydrophobic effects is not the same toward IAM phases and biological membranes. These results suggest that the IAM phases could not be a suitable model in assessing the acid-membrane interactions. However, it is not possible to generalize this observation, and further work in this area needs to be done to obtain a full understanding of the partitioning of carboxylic compounds in biological membranes. For the non-carboxylic compounds included in the analysis, this work shows that the hydrophobic factors are of prime importance for the IAM-retention of these compounds, while the specific polar interactions, such as electron pair donor−acceptor interactions and electrostatic interactions, are also involved, but they are not dominant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This multi-disciplinary investigation found that: i) in Triodia-mallee the Mallee Emu-wren requires vegetation greater than 16-18 years since last burned, with high coverage of mature growth-phase Triodia scariosa (spinifex) and, ii) the species is panmictic with relatively low genetic diversity and evidence of genetic drift and bottlenecks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural rubber (NR)/multi-walled carbon nanotube (MWCNTs) composites were prepared bycombining self-assembly and latex compounding techniques. The acid-treated MWCNTs (H2SO4: HNO3=3:1,volume ratio) were self-assembled with poly (diallyldimethylammonium chloride) (PDDA) through electrostaticadhesion. In the second assembling, NR/MWCNTs composites were developed by mixing MWCNTs/PDDAsolution with NR latex. The results show that MWCNTs are homogenously distributed throughout the NRmatrix as single tube and present a great interfacial adhesion with NR phase when MWCNTs contents areless than 3 wt%. Moreover, the addition of the MWCNTs brings about the remarkable enhancement in tensilestrength and crosslink density compared with the NR host, and the data peak at 2 wt% MWCNTs loadings.When more MWCNTs are loaded, aggregations of MWCNTs are gradually generated, and the tensile strengthand crosslink both decrease to a certain extent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to explore the various possible property trends in ionic liquid mixtures, five different ionic liquids were mixed with N-methyl-N-propylpyrrolidinium bis(trifluoromethylsulfonyl)amide ([C3mpyr][NTf2]), and the viscosities, excess molar volumes, ionic conductivities, and phase diagrams of the mixtures were determined over a range of temperatures. In a number of the mixtures the crystallization of both components was completely suppressed and no melting point was observable. Such mixtures of similar ionic liquids thus have potential for use in low-temperature applications by extending the liquid range to Tg. The molar conductivities and viscosities are described as approximating predictable or “simple” mixing behaviors, while excess molar volumes were found to show a variety of mixing and nonideal mixing effects. Mixture equations for viscosity and conductivity are discussed and analyzed. An immiscibility window was observed in the trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)amide ([P6,6,6,14][NTf2]) in the [C3mpyr][NTf2] system in the [C3mpyr][NTf2]-rich region. Unusual physical properties are exhibited by miscible compositions near the demixing line. These compositions are described as [P6,6,6,14][NTf2]-like, even up to 0.5 mol fraction of [C3mpyr][NTf2].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Southern Australia is currently divided into three marine biogeographical provinces based on faunal distributions and physical parameters. These regions indicate eastern and western distributions, with an overlap occurring in the Bass Strait in Victoria. However, studies indicate that the boundaries of these provinces vary depending on the species being examined, and in particular on the mode of development employed by that species, be they direct developers or planktonic larvae dispersers. Mitochondrial DNA sequence analysis of the surf barnacle Catomerus polymerus in southern Australia revealed an east–west phylogeographical split involving two highly divergent clades (cytochrome oxidase I 3.5 ± 0.76%, control region 6.7 ± 0.65%), with almost no geographical overlap. Spatial genetic structure was not detected within either clade, indicative of a relatively long-lived planktonic larval phase. Five microsatellite loci indicated that C. polymerus populations exhibit relatively high levels of genetic divergence, and fall into four subregions: eastern Australia, central Victoria, western Victoria and Tasmania, and South Australia. FST values between eastern Australia (from the eastern mitochondrial DNA clade) and the remaining three subregions ranged from 0.038 to 0.159, with other analyses indicating isolation by distance between the subregions of western mitochondrial origin. We suggest that the east–west division is indicative of allopatric divergence resulting from the emergence of the Bassian land-bridge during glacial maxima, preventing gene flow between these two lineages. Subsequently, contemporary ecological conditions, namely the East Australian, Leeuwin, and Zeehan currents and the geographical disjunctions at the Coorong and Ninety Mile Beach are most likely responsible for the four subregions indicated by the microsatellite data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A polyelectrolyte/polymeric semiconductor core/shell structure is developed for organic field-effect transistors (OFETs) based on sulfonated poly(arylene ether ketone)/polyaniline core/shell nanofibers via electrospinning and solution-phase selective polymerization. The polyelectrolyte does not work as a gate dielectric, but can provide an internal modulation from the nanointerface of the 1D core/shell nanostructure. The transistor devices display very high mobilities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the ion transport behavior of organic ionic plastic crystals (OIPCs) is crucial for their potential application as solid electrolytes in various electrochemical devices such as lithium batteries. In the present work, the ion transport mechanism is elucidated by analyzing experimental data (single-crystal XRD, multinuclear solid-state NMR, DSC, ionic conductivity, and SEM) as well as the theoretical simulations (second moment-based solid static NMR line width simulations) for the OIPC diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate ([P1,2,2,4][PF6]). This material displays rich phase behavior and advantageous ionic conductivities, with three solid–solid phase transitions and a highly “plastic” and conductive final solid phase in which the conductivity reaches 10–3 S cm–1. The crystal structure shows unique channel-like packing of the cations, which may allow the anions to diffuse more easily than the cations at lower temperatures. The strongly phase-dependent static NMR line widths of the 1H, 19F, and 31P nuclei in this material have been well simulated by different levels of molecular motions in different phases. Thus, drawing together of the analytical and computational techniques has allowed the construction of a transport mechanism for [P1,2,2,4][PF6]. It is also anticipated that utilization of these techniques will allow a more detailed understanding of the transport mechanisms of other plastic crystal electrolyte materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A highly performing natural rubber/silica (NR/SiO2) nanocomposite with a SiO2 loading of 2 wt% was prepared by combining similar dissolve mutually theory with latex compounding techniques. Before polymerization, double bonds were introduced onto the surface of the SiO2 particles with the silane-coupling agent. The core-shell structure silica-poly(methyl methacrylate), SiO2-PMMA, nanoparticles were formed by grafting polymerization of MMA on the surface of the modified SiO2 particles via in situ emulsion, and then NR/SiO2 nanocomposite was prepared by blending SiO2-PMMA and PMMA-modified NR (NR-PMMA). The Fourier transform infrared spectroscopy results show that PMMA has been successfully introduced onto the surface of SiO2, which can be well dispersed in NR matrix and present good interfacial adhesion with NR phase. Compared with those of pure NR, the thermal resistance and tensile properties of NR/SiO2 nanocomposite are significantly improved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By integrating together VO2’s unique near-room-temperature (RT) semiconductor–metal (S–M) phase transition with a thin silver (Ag) layer’s plasmonic properties, VO2/Ag multilayers could present a much enhanced optical transmission change when increasing the temperature from RT to over VO2’s S–M phase-transition temperature. Changing VO2 and Ag layer thicknesses can also significantly tune their transmission and absorption properties, which could lead to a few useful designs in optoelectronic and energy-saving industries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Elucidating the rate and geometry of molecular dynamics is particularly important for unravelling ion-conduction mechanisms in electrochemical materials. The local molecular motions in the plastic crystal 1-ethyl-1-methylpyrrolidinium tetrafluoroborate ([C2 mpyr][BF4 ]) are studied by a combination of quantum chemical calculations and advanced solid-state nuclear magnetic resonance spectroscopy. For the first time, a restricted puckering motion with a small fluctuation angle of 25° in the pyrrolidinium ring has been observed, even in the low-temperature phase (-45 °C). This local molecular motion is deemed to be particularly important for the material to maintain its plasticity, and hence, its ion mobility at low temperatures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A direct approach to functionalize and reduce pre-shaped graphene oxide 3D architectures is demonstrated by gamma ray irradiation in gaseous phase under analytical grade air, N2 or H2. The formation of radicals upon gamma ray irradiation is shown to lead to surface functionalization of the graphene oxide sheets. The reduction degree of graphene oxide, which can be controlled through varying the γ-ray total dose irradiation, leads to the synthesis of highly crystalline and near defect-free graphene based materials. The crystalline structure of the graphene oxide and γ-ray reduced graphene oxide was investigated by x-ray diffraction and Raman spectroscopy. The results reveal no noticeable changes in the size of sp2 graphitic structures for the range of tested gases and total exposure doses suggesting that the irradiation in gaseous phase does not damage the graphene crystalline domains. As confirmed by X-ray photoemission spectroscopy, the C/O ratio of γ-ray reduced graphene oxide is increasing from 2.37 for graphene oxide to 6.25 upon irradiation in hydrogen gas. The removal of oxygen atoms with this reduction process in hydrogen results in a sharp 400 times increase of the electrical conductivity of γ-ray reduced graphene oxide from 0.05 S cm-1 to as high as 23 S cm-1. A significant increase of the contact angle of the γ-ray reduced graphene oxide bucky-papers and weakened oxygen rich groups characteristic peaks across the Fourier transform infrared spectra further illustrate the efficacy of the γ-ray reduction process. A mechanism correlating the interaction between hydrogen radicals formed upon γ-ray irradiation of hydrogen gas and the oxygen rich groups on the surface of the graphene oxide bucky-papers is proposed, in order to contribute to the synthesis of reduced graphene materials through solution-free chemistry routes.