33 resultados para p-Adic field


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Characterization of the anticancer active compound trans-[PtII{(p-BrC6F4)NCH2CH2NEt2}Cl(py)] is described along with identification of electrochemical conditions that favor formation of a monomeric one-electron-oxidized PtIII derivative. The square-planar organoamidoplatinum(II) compound was synthesized through a carbon dioxide elimination reaction. Structural characterization by using single-crystal X-Ray diffraction reveals a trans configuration with respect to donor atoms of like charges. As PtIII intermediates have been implicated in the reactions of platinum anticancer agents, electrochemical conditions favoring the formation of one-electron-oxidized species were sought. Transient cyclic voltammetry at fast scan rates or steady-state rotating disc and microelectrode techniques in a range of molecular solvents and an ionic liquid confirm the existence of a well-defined, chemically and electrochemically reversible one-electron oxidation process that, under suitable conditions, generates a PtIII complex, which is proposed to be monomeric [PtIII{(p-BrC6F4)NCH2CH2NEt2}Cl(py)]+. Electron paramagnetic resonance spectra obtained from highly non-coordinating dichloromethane/([Bu4N][B(C6F5)4]) solutions, frozen to liquid nitrogen temperature immediately after bulk electrolysis in a glove box, support the PtIII assignment rather than formation of a PtII cation radical. However, the voltammetric behavior is highly dependent on the timescale of the experiments, temperature, concentration of trans-[PtII{(p-BrC6F4)NCH2CH2NEt2}- Cl(py)], and the solvent/electrolyte. In the low-polarity solvent CH2Cl2 containing the very weakly coordinating electrolyte [Bu4N][B(C6F5)4], a well-defined reversible one-electron oxidation process is observed on relatively long timescales, which is consistent with the stabilization of the cationic platinum(III) complex in non-coordinating media. Bulk electrolysis of low concentrations of [Pt{(p-BrC6F4)NCH2CH2NEt2}Cl(py)] favors the formation of monomeric [PtIII{(p-BrC6F4)NCH2CH2NEt2}Cl(py)]+. Simulations allow the reversible potential of the PtII/PtIII process and the diffusion coefficient of [PtIII{(p-BrC6F4)- NCH2CH2NEt2}Cl(py)]+ to be calculated. Reversible electrochemical behavior, giving rise to monomeric platinum(III) derivatives, is rare in the field of platinum chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to assess the validity of a GPS tracking system to estimate energy expenditure (EE) during exercise and field sport locomotor movements. Twenty-seven participants each completed one 90 minute exercise session on an outdoor synthetic futsal pitch. During the exercise session participants wore a 5 Hz GPS unit interpolated to 15 Hz (SPI HPU, GPSports Pty Ltd, Australia) and a portable gas analyser (Metamax® 3B, Cortex Pty Ltd, Germany) which acted as the criterion measure of EE. The exercise session was comprised of alternating five minute exercise bouts of randomised walking, jogging, running or a field sport circuit (x3) followed by 10 minutes of recovery. One-way ANOVA showed significant (p<0.01) and very large underestimations between GPS metabolic power derived EE and VO2 derived EE for all field sport circuits (% difference ≈ -44%). No differences in EE were observed for the jog (7.8%) and run (4.8%) while very large overestimations were found for the walk (43.0%). The GPS metabolic power EE over the entire 90 minute session was significantly lower (p<0.01) than the VO2 EE, resulting in a moderate underestimation overall (-19%). The results of this study suggest that a GPS tracking system using the metabolic power model of EE does not accurately estimate EE in field sport movements or over an exercise session consisting of mixed locomotor activities interspersed with recovery periods; however is able to provide a reasonably accurate estimation of EE during continuous jogging and running.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a new route of tethering graphene nanoplatelets (GNPs) with Fe3O4 nanoparticles to enable their alignment in an epoxy using a weak magnetic field. The GNPs are first stabilised in water using polyvinylpyrrolidone (PVP) and Fe3O4 nanoparticles are then attached via co-precipitation. The resultant Fe3O4/PVP-GNPs nanohybrids are superparamagnetic and can be aligned in an epoxy resin, before gelation, by applying a weak magnetic field as low as 0.009 T. A theoretical model describing the alignment process is presented and used to quantify the effects of key parameters on the time needed for the alignment process. Compared to the unmodified epoxy, the resulting epoxy polymer nanocomposites containing randomly-oriented Fe3O4/PVP-GNPs nanohybrids exhibit significantly improved electrical conductivities by up to three orders of magnitude and fracture energies by up to 300%. The alignment of the Fe3O4/PVP-GNPs nanohybrids in the epoxy polymer nanocomposites transverse to the direction of crack propagation further increased the fracture energy by 50%, and the electrical conductivity by seven fold in the alignment direction, compared to the nanocomposites containing randomly-oriented nanohybrids.