33 resultados para oxygen reduction


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work compares the oxygen permeation fluxes of five different La0.6Sr0.4Co0.2Fe0.8O3−δ membranes (e.g. disk, conventional hollow fiber, modified hollow fiber, Ag- or Pt-deposited hollow fiber membranes) to elucidate the dominance of a particular oxygen transport limiting step (e.g., bulk-diffusion or surface reaction) within each of these membranes. At 900 °C and 100 mL min–1 helium gas sweep rate, the oxygen fluxes for disk, conventional hollow fiber, modified hollow fiber, Ag-deposited modified hollow fiber, and Pt-deposited modified hollow fiber membranes are 0.10, 0.33, 0.84, 1.42, and 2.62 mL min–1 cm–2, respectively, denoting enhanced performance in this sequential order. More than 300% enhancement of fluxes is evidenced by modifying the geometry from disk to conventional hollow fiber. This is attributed to the thickness reduction from 1 mm to 0.3 mm, thus implying bulk-diffusion and surface reaction as the jointly limiting transport step for this disk membrane. In contrast to a conventional hollow fiber that has a sandwich cross-sectional structure (e.g. dense center layer sandwiched by two finger-like layers) as well as dense outer and inner circumference surfaces, the modified hollow fiber has only one dense layer in its outer circumference surface with finger-like porous layer extending all the way from outer cross-sectional part to the inner cross-sectional part. This microstructural difference, in turn, provides substantial reduction of membrane thickness and enlarges surface reaction area for modified hollow fiber (relative to conventional hollow fiber), both of which contributes to the reduced bulk-diffusion and surface reaction resistance; evidenced by almost 250% oxygen flux enhancement. To enhance the performance even further, catalyst (e.g., Ag or Pt) deposition on the outer circumference surface of modified hollow fiber can be utilized to reduce its dominating surface reaction resistance. While both catalysts increase the oxygen fluxes, Pt reveals itself as the better candidate relative to Ag due to melting-induced aggregation and growth of Ag at 950 °C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mean oxygen consumption and simultaneous ventilation frequency of nine non-reproductive brown long-eared bats (body mass 8.53–13.33 g) were measured on 159 occasions. Ambient (chamber) temperature at which the measurements were made ranged from 10.8 to 41.1°C. Apneic ventilation occurred in 22 of the 59 measurements made when mean oxygen consumption was less than 0.5 ml·min-1. No records of apneic ventilation were obtained when it was over 0.5 ml·min-1. The relationship between ventilation frequency and mean oxygen consumption depended on whether ventilation was apneic or non-apneic. When ventilation was non-apneic the relationship was positive and log-linear. When ventilation was apneic the relationship was log-log. Within the thermoneutral zone ventilation frequency was not significantly different from that predicted from allometric equations for a terrestrial mammal of equivalent body mass, but was significantly greater than that predicted for a bird. A reduction in the amount of oxygen consumed per breath occurred at ambient temperatures above the upper critical temperature (39°C).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

 A green method for the deoxygenation of graphene oxide (GO) was developed using K2CO3 as a reusable reduction agent. The size and thickness of the reduced GO are less than 1 μm and around 0.85 nm, respectively. Carbon dioxide is the only byproduct during this process. The reduction mechanism of the graphene oxide includes two reduction steps. On the one hand, ionic oxygen generated from the electrochemical reaction between hydroxyl ions and oxygen in the presence of K2CO3 reacts with carbonyl groups attached to the GO layers at 50°C. On the other hand, ionic oxygen attacks hydroxyl and epoxide groups, which become carbonyl groups and then are converted to carbon dioxide by K2CO3 at 90°C. These oxygenous groups are finally converted to CO2 from graphene layers, leading to the formation of graphene sheets. Headspace solid-phase microextraction and gas chromatography-mass spectrometry detected the existence of n-dodecanal and 4-ethylbenzoic acid cyclopentyl ester during the reduction, suggesting that oxygen functional groups on the GO layers are not only aligned, but randomly dispersed in some areas based on the proposed mechanism.