43 resultados para optimal systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Linear systems with interval time-varying delay and unknown-but-bounded disturbances are considered in this paper. We study the problem of finding outer bound of forwards reachable sets and inter bound of backwards reachable sets of the system. Firstly, two definitions on forwards and backwards reachable sets, where initial state vectors are not necessary to be equal to zero, are introduced. Then, by using the Lyapunov-Krasovskii method, two sufficient conditions for the existence of: (i) the smallest possible outer bound of forwards reachable sets; and (ii) the largest possible inter bound of backwards reachable sets, are derived. These conditions are presented in terms of linear matrix inequalities with two parameters need to tuned, which therefore can be efficiently solved by combining existing convex optimization algorithms with a two-dimensional search method to obtain optimal bounds. Lastly, the obtained results are illustrated by four numerical examples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we investigate the channel estimation problem for multiple-input multiple-output (MIMO) relay communication systems with time-varying channels. The time-varying characteristic of the channels is described by the complex-exponential basis expansion model (CE-BEM). We propose a superimposed channel training algorithm to estimate the individual first-hop and second-hop time-varying channel matrices for MIMO relay systems. In particular, the estimation of the second-hop time-varying channel matrix is performed by exploiting the superimposed training sequence at the relay node, while the first-hop time-varying channel matrix is estimated through the source node training sequence and the estimated second-hop channel. To improve the performance of channel estimation, we derive the optimal structure of the source and relay training sequences that minimize the mean-squared error (MSE) of channel estimation. We also optimize the relay amplification factor that governs the power allocation between the source and relay training sequences. Numerical simulations demonstrate that the proposed superimposed channel training algorithm for MIMO relay systems with time-varying channels outperforms the conventional two-stage channel estimation scheme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

© 2002-2012 IEEE. In this paper, we investigate the channel estimation problem for two-way multiple-input multiple-output (MIMO) relay communication systems in frequency-selective fading environments. We apply the method of superimposed channel training to estimate the individual channel state information (CSI) of the first-hop and second-hop links for two-way MIMO relay systems with frequency-selective fading channels. In this algorithm, a relay training sequence is superimposed on the received signals at the relay node to assist the estimation of the second-hop channel matrices. The optimal structure of the source and relay training sequences is derived to minimize the mean-squared error (MSE) of channel estimation. Moreover, the optimal power allocation between the source and relay training sequences is derived to improve the performance of channel estimation. Numerical examples are shown to demonstrate the performance of the proposed superimposed channel training algorithm for two-way MIMO relay systems in frequency-selective fading environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An optimal design of Adaptive Neuro-Fuzzy Inference System (ANFIS) traffic signal controller is presented in this paper. The proposed controller aims to adjust a set of green times for traffic lights in a single intersection with the purpose of minimizing travel delay time and traffic congestion. The ANFIS controller is trained, to learned how to set green times for each traffic phase. This intelligent controller uses the Cuckoo Search (CS) algorithm to tune its parameters during the learning pried. Evaluating the performance of the proposed controller in comparison with the performance of a FLS controller (FLC) with predefined rules and membership functions, and also three fixed-Time controllers, illustrates the better performance of the optimal ANFIS controller against the other benchmark controllers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In space-based networks, the data relay satellites can assist low-earth-orbit satellites in relaying data to other satellites or the ground station and improve the real time system throughput. To take full advantage of transmission resource of the cooperative relays, this paper proposes a multiple access and resource allocation strategy, in which relays can receive and transmit simultaneously according to channel characteristics of space-based systems. Based on the queueing theoretic formulation, the stability of the proposed protocol is analyzed and the maximum stable throughput region is derived, which would provide the appropriate guidance for the design of the system optimal control. Simulation results exhibit multiple factors that affect the stable throughput and verify the theoretical analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For multiple heterogeneous multicore server processors across clouds and data centers, the aggregated performance of the cloud of clouds can be optimized by load distribution and balancing. Energy efficiency is one of the most important issues for large-scale server systems in current and future data centers. The multicore processor technology provides new levels of performance and energy efficiency. The present paper aims to develop power and performance constrained load distribution methods for cloud computing in current and future large-scale data centers. In particular, we address the problem of optimal power allocation and load distribution for multiple heterogeneous multicore server processors across clouds and data centers. Our strategy is to formulate optimal power allocation and load distribution for multiple servers in a cloud of clouds as optimization problems, i.e., power constrained performance optimization and performance constrained power optimization. Our research problems in large-scale data centers are well-defined multivariable optimization problems, which explore the power-performance tradeoff by fixing one factor and minimizing the other, from the perspective of optimal load distribution. It is clear that such power and performance optimization is important for a cloud computing provider to efficiently utilize all the available resources. We model a multicore server processor as a queuing system with multiple servers. Our optimization problems are solved for two different models of core speed, where one model assumes that a core runs at zero speed when it is idle, and the other model assumes that a core runs at a constant speed. Our results in this paper provide new theoretical insights into power management and performance optimization in data centers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two-way relaying systems are known to be capable of providing higher spectral efficiency compared with one-way relaying systems. However, the channel estimation problem for two-way relaying systems becomes more complicated. In this paper, we propose a superimposed channel training scheme for two-way MIMO relay communication systems, where the individ-ual channel information for users-relay and relay-users links are estimated. The optimal structure of the source and relay training sequences are derived when the mean-squared error (MSE) of channel estimation is minimized. We also optimize the power allocation between the source and relay training sequences to improve the performance of the algorithm. Numerical examples are shown to demonstrate the performance of the proposed channel training algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This in-situ analysis quantifies hydrogen sulfide gas emission from a simulated sewerage system, with varying slopes between 0.5% and 1.5%, under the dosing of certain mitigating chemicals. A portable H₂S gas detector (OdaLog) was employed to record the gaseous phase concentration of hydrogen sulfide. The investigation was comprised of three interrelated phases. In the first stage, precision of four prediction models for H₂S gas emission from a laboratory-synthesized wastewater was assessed. It was found that the model suggested by Lahav fitted the experimental results accurately. Second phase explorations included jar tests to obtain the optimal dosage of four hydrogen sulfide suppressing chemicals, being Mg(OH)₂, NaOH, Ca(NO₃)₂, and FeCl₂. In the third stage, the optimal dosage of chemicals was introduced into the experimental sewerage system, with the OdaLog continuously monitoring the H₂S gas emission. According to a baseline (experiments with no chemical addition), it was found that NaOH and Mg(OH)₂ performed very good in mitigating the release of H₂S gas, while Ca(NO₃)₂ was not effective most probably due to the absence of biological activity. Furthermore, interpretation of OdaLog data through the optimum emission prediction model revealed that higher sewer slope led to more emission.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to low electricity rates at nighttime, home charging for electric vehicles (EVs) is conventionally favored. However, the recent tendency in support of daytime workplace charging that absorbs energy produced by solar photovoltaic (PV) panels appears to be the most promising solution to facilitating higher PV and EV penetration in the power grid. This paper studies optimal sizing of workplace charging stations considering probabilistic reactive power support for plug-in hybrid electric vehicles (PHEVs), which are powered by PV units in medium voltage (MV) commercial networks. In this study, analytical expressions are first presented to estimate the size of charging stations integrated with PV units with an objective of minimizing energy losses. These stations are capable of providing reactive power support to the main grid in addition to charging PHEVs while considering the probability of PV generation. The study is further extended to investigate the impact of time-varying voltage-dependent charging load models on PV penetration. The simulation results obtained on an 18-bus test distribution system show that various charging load models can produce dissimilar levels of PHEV and PV penetration. Particularly, the maximum energy loss and peak load reductions are achieved at 70.17% and 42.95% respectively for the mixed charging load model, where the system accommodates respective PHEV and PV penetration levels of 9.51% and 50%. The results of probabilistic voltage distributions are also thoroughly reported in the paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an approach to design a nonlinear observer-based excitation controller for multimachine power systems to enhance the transient stability. The controller is designed based on the partial feedback linearization of a nonlinear power system model which transforms the model into a reducedorder linear one with an autonomous dynamical part. Then a linear state feedback stabilizing controller is designed for the reduced-order linear power system model using optimal control theory which enhances the stability of the entire system. The states of the feedback stabilizing controller are obtained from the nonlinear observer and the performance of this observer-based controller is independent of the operating points of power systems. The performance of the proposed observer-based controller is compared to that of an exact feedback linearizing observer-based controller and a partial feedback linearizing controller without observer under different operating conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Market-oriented reverse auction is an efficient and cost-effective method for resource allocation in cloud workflow systems since it can dynamically allocate resources depending on the supply-demand relationship of the cloud market. However, during the auction the price of cloud resource is usually fixed, and the current resource allocation mechanisms cannot adapt to the changeable market properly which results in the low efficiency of resource utilization. To address such a problem, a dynamic pricing reverse auction-based resource allocation mechanism is proposed. During the auction, resource providers can change prices according to the trading situation so that our novel mechanism can increase the chances of making a deal and improve efficiency of resource utilization. In addition, resource providers can improve their competitiveness in the market by lowering prices, and thus users can obtain cheaper resources in shorter time which would decrease monetary cost and completion time for workflow execution. Experiments with different situations and problem sizes are conducted for dynamic pricing-based allocation mechanism (DPAM) on resource utilization and the measurement of Time∗Cost (TC). The results show that our DPAM can outperform its representative in resource utilization, monetary cost, and completion time and also obtain the optimal price reduction rates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In current data centers, an application (e.g., MapReduce, Dryad, search platform, etc.) usually generates a group of parallel flows to complete a job. These flows compose a coflow and only completing them all is meaningful to the application. Accordingly, minimizing the average Coflow Completion Time (CCT) becomes a critical objective of flow scheduling. However, achieving this goal in today's Data Center Networks (DCNs) is quite challenging, not only because the schedule problem is theoretically NP-hard, but also because it is tough to perform practical flow scheduling in large-scale DCNs. In this paper, we find that minimizing the average CCT of a set of coflows is equivalent to the well-known problem of minimizing the sum of completion times in a concurrent open shop. As there are abundant existing solutions for concurrent open shop, we open up a variety of techniques for coflow scheduling. Inspired by the best known result, we derive a 2-approximation algorithm for coflow scheduling, and further develop a decentralized coflow scheduling system, D-CAS, which avoids the system problems associated with current centralized proposals while addressing the performance challenges of decentralized suggestions. Trace-driven simulations indicate that D-CAS achieves a performance close to Varys, the state-of-the-art centralized method, and outperforms Baraat, the only existing decentralized method, significantly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An off-grid photovoltaic power system requires an energy storage system, especially batteries, for mitigation of variability and intermittency problems, and for assured service reliability and availability. The longevity and reliability of such batteries depend on the effectiveness of the charging system. This paper presents the modelling, simulation and hardware implementation of a four-stage switch-mode charger based on the single-ended primary inductance converter. The digital signal processor based controller implements algorithms for the system's power balance control, maximum power point tracking to improve charging speed and efficiency, four-stage optimal charging, and system's protection. The protection algorithm provides over-charge, overdischarge, over-temperature and short circuit protection capabilities. The proposed system has the following advantages: ability to continuously charge the batteries even at reduced solar irradiation, higher efficiency, and use of adaptive thermally compensated set points for optimum performance. A prototype is built and experimental results are presented to validate the simulation results.