66 resultados para norbornane scaffold


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The construction of tissue-engineered parts such as heart valves and arteries requires more than just the seeding of cells onto a biocompatible/biodegradable polymeric scaffold. It is essential that the functionality and mechanical integrity of the cell-seeded scaffold be investigated in vitro prior to in vivo implantation. The correct hemodynamic conditioning would lead to the development of tissues with enhanced mechanical strength and cell viability. Therefore, a bioreactor that can simulate physiological conditions would play an important role in the preparation of tissue-engineered constructs. In this article, we present and discuss the design concepts and criteria, as well as the development, of a multifunctional bioreactor for tissue culture in vitro. The system developed is compact and easily housed in an incubator to maintain sterility of the construct. Moreover, the proposed bioreactor, in addition to mimicking in vivo conditions, is highly flexible, allowing different types of constructs to be exposed to various physiological flow conditions. Initial verification of the hemodynamic parameters using Laser doppler anemometry indicated that the bioreactor performed well and produced the correct physiological conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, porous Ti–10Nb–10Zr alloy scaffolds with different porosities were successfully fabricated by a ‘‘space-holder” sintering method. By the addition of biocompatible alloying elements the porous TiNbZr scaffolds achieved significantly higher strength than unalloyed Ti scaffolds of the same porosity. In particular, the porous TiNbZr alloy with 59% porosity exhibited an elastic modulus and plateau stress of 5.6 GPa and 137 MPa, respectively. The porous alloys exhibited excellent ductility during compression tests and the deformation mechanism is mainly governed by bending and buckling of the struts. Cell cultures revealed that SaOS2 osteoblast-like cells grew on the surface and inside the pores and showed good spreading. Cell viability for the porous scaffold was three times higher than the solid counterpart. The present study has demonstrated that the porous TiNbZr alloy scaffolds are promising scaffold biomaterials for
bone tissue engineering by virtue of their appropriate mechanical properties, highly porous structure and excellent biocompatibility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the last 20 years much has been done to encourage female students to choose computing courses and computing careers. Some instances of positive effects have been reported, yet the proportional disparity in gender in this discipline continues to grow. This paper reports on a program called 'Digital Divas'. Digital Divas aims to scaffold positive perceptions around computing in the early years of secondary school by involving female students in upbeat computing experiences over a semester. It introduces university undergraduates to the secondary classroom to provide informal role models and mentors, as well as interactions with young computing professionals. This classroom environment enables computer applications to be more strongly linked with future careers. The commitment to a semester length unit was influential in changing perceptions about girls and computing, and the program was supported by the wider school community. We posit that this type of curriculum intervention is needed and has the potential to build technical human capital in female students.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silk fibroin protein is biodegradable and biocompatible, exhibiting excellent mechanical properties for various biomedical applications. However, porous three-dimensional (3-D) silk fibroin scaffolds, or silk sponges, usually fall short in matching the initial mechanical requirements for bone tissue engineering. In the present study, silk sponge matrices were reinforced with silk microparticles to generate protein-protein composite scaffolds with desirable mechanical properties for in vitro osteogenic tissue formation. It was found that increasing the silk microparticle loading led to a substantial increase in the scaffold compressive modulus from 0.3 MPa (non-reinforced) to 1.9 MPa for 1:2 (matrix:particle) reinforcement loading by dry mass. Biochemical, gene expression, and histological assays were employed to study the possible effects of increasing composite scaffold stiffness, due to microparticle reinforcement, on in vitro osteogenic differentiation of human mesenchymal stem cells (hMSCs). Increasing silk microparticle loading increased the osteogenic capability of hMSCs in the presence of bone morphogenic protein-2 (BMP-2) and other osteogenic factors in static culture for up to 6 weeks. The calcium adsorption increased dramatically with increasing loading, as observed from biochemical assays, histological staining, and microcomputer tomography (μCT) analysis. Specifically, calcium content in the scaffolds increased by 0.57, 0.71, and 1.27 mg (per μg of DNA) from 3 to 6 weeks for matrix to particle dry mass loading ratios of 1:0, 1:1, and 1:2, respectively. In addition, μCT imaging revealed that at 6 weeks, bone volume fraction increased from 0.78% for non-reinforced to 7.1% and 6.7% for 1:1 and 1:2 loading, respectively. Our results support the hypothesis that scaffold stiffness may strongly influence the 3-D in vitro differentiation capabilities of hMSCs, providing a means to improve osteogenic outcomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article, we report on the preparation and cell culture performance of a novel fibrous matrix that has an interbonded fiber architecture, excellent pore interconnectivity, and controlled pore size and porosity. The fibrous matrices were prepared by combining melt-bonding of short synthetic fibers with a template leaching technique. The microcomputed tomography and scanning electron microscopy imaging verified that the fibers in the matrix were highly bonded, forming unique isotropic pore architectures. The average pore size and porosity of the fibrous matrices were controlled by the fiber/template ratio. The matrices having the average pore size of 120, 207, 813, and 994 mm, with the respective porosity of 73%, 88%, 96%, and 97%, were investigated. The applicability of the matrix as a three-dimensional (3D) tissue scaffold for cell culture was demonstrated with two cell lines, rat skin fibroblast and Chinese hamster ovary, and the influences of the matrix porosity and surface area on the cell culture performance were examined. Both cell lines grew successfully in the matrices, but they showed different preferences in pore size and porosity. Compared with two-dimensional tissue culture plates, the cell number on 3D fibrous matrices was increased by 97.27% for the Chinese hamster ovary cells and 49.46% for the fibroblasts after 21 days of culture. The fibroblasts in the matrices not only grew along the fiber surface but also bridged among the fibers, which was much different from those on two-dimensional scaffolds. Such an interbonded fibrous matrix may be useful for developing new fiber-based 3D tissue scaffolds for various cell culture applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigated whether mothers of children assessed as having gifted/high IQ at 5 years were more likely to scaffold their children in analogical and metacognitive thinking during the infant/toddler period than mothers of children with more typical IQs. The researcher videotaped 21 children in monthly play sessions with their mothers, from the time that the children were 8 months old until they were 17 months old, and coded the mothers' verbalizations for scaffolding of analogical and metacognitive thinking. A psychologist assessed these children on the Stanford-Binet IV (Thorndike, 1986) and found ability levels ranging from average to high. Analysis showed that mothers of the children with high IQs introduced analogical and metacognitive scaffolding earlier than mothers of children with average IQs. The findings are consistent with a bidirectional model of gifted development in which mothers respond to support advanced development from infancy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thesis established a stable three-dimensional fibrous tissue scaffold that has controlled pore structure and inter-bonded fibrous structure, and also examined the effects of the 3D fibrous matrices and functional surfaces including nano-scale topography, bioactive CaP coating and antibacterial treatment on the cell growth behavior for tissue engineering application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis established a stable three-dimensional fibrous tissue scaffold that has controlled pore structure and inter-bonded fibrous structure, and also examined the effects of the 3D fibrous matrices and functional surfaces including nano-scale topography, bioactive CaP coating and antibacterial treatment on the cell growth begaviour for tissue engineering application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The zinc hydrolase superfamily is a group of divergently related proteins that are predominantly enzymes with a zinc-based catalytic mechanism. The common structural scaffold of the superfamily consists of an eight-stranded β-sheet flanked by six α-helices. Previous analyses, while acknowledging the likely divergent origins of leucine aminopeptidase, carboxypeptidase A and the co-catalytic enzymes of the metallopeptidase H clan based on their structural scaffolds, have failed to find any homology between the active sites in leucine aminopeptidase and the metallopeptidase H clan enzymes. Here we show that these two groups of co-catalytic enzymes have overlapping dizinc centers where one of the two zinc atoms is conserved in each group. Carboxypeptidase A and leucine aminopeptidase, on the other hand, no longer share any homologous zinc-binding sites. At least three catalytic zinc-binding sites have existed in the structural scaffold over the period of history defined by available structures. Comparison of enzyme-inhibitor complexes show that major remodeling of the substrate-binding site has occurred in association with each change in zinc ligation in the binding site. These changes involve re-registration and re-orientation of the substrate. Some residues important to the catalytic mechanism are not conserved amongst members. We discuss how molecules acting in trans may have facilitated the mutation of catalytically important residues in the active site in this group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The challenge of comparing two or more genomes that have undergone recombination and substantial amounts of segmental loss and gain has recently been addressed for small numbers of genomes. However, datasets of hundreds of genomes are now common and their sizes will only increase in the future. Multiple sequence alignment of hundreds of genomes remains an intractable problem due to quadratic increases in compute time and memory footprint. To date, most alignment algorithms are designed for commodity clusters without parallelism. Hence, we propose the design of a multiple sequence alignment algorithm on massively parallel, distributed memory supercomputers to enable research into comparative genomics on large data sets. Following the methodology of the sequential progressiveMauve algorithm, we design data structures including sequences and sorted k-mer lists on the IBM Blue Gene/P supercomputer (BG/P). Preliminary results show that we can reduce the memory footprint so that we can potentially align over 250 bacterial genomes on a single BG/P compute node. We verify our results on a dataset of E.coli, Shigella and S.pneumoniae genomes. Our implementation returns results matching those of the original algorithm but in 1/2 the time and with 1/4 the memory footprint for scaffold building. In this study, we have laid the basis for multiple sequence alignment of large-scale datasets on a massively parallel, distributed memory supercomputer, thus enabling comparison of hundreds instead of a few genome sequences within reasonable time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Teaching materials such as study guides have implicit structure that can be exploited to explicitly assist in the learning and teaching process. Document technologies specific to the teaching context generate visible structures and linkages in a consistent manner across multiple course materials. We describe techniques that:

• Create, manage and validate links between the learning objectives, content related to each objective and corresponding assessment task.

• Explicitly present relationships between concepts, as a concept map, related to unit content and external study resources.

• Treat various study resources (study guide, presentation slides) as consistent views.

• Facilitate the use of external media to support multiple modalities.

The process creates teaching content as a single master document which is annotated to: identify learning outcomes associated with topics and exercises, relationships between concepts covered, references to external resources and media, as well as summary points and keywords. Different views of this master document produce the range of course documentation.

Examples of documents include: a study guide with learning outcomes linked to content, concept maps providing a graphical view of key relationships, and presentation slides that generate visual mnemonics for important topics.

While this structure simplifies formatting of learning materials it also offers additional benefits to the teacher. Reports are generated showing that all outcomes are covered and assessed.   Explicitly annotating and visualizing concepts allows the lecturer to ensure that all elements fall within a single scaffold. Simplified access to external media encourages alternative presentation modalities and produces presentations that are easily adapted to new themes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nylon is a relatively inert polymer. The ability to easily functionalize nylon with biomolecules will improve the utilization of nylon in biological systems. A potential use of the biofunctionalized nylon scaffolds is in devices for cell therapeutics that can specifically select cells present in small numbers, such as hematopoietic stem cells. This study developed a versatile and simple two-step technique combining oxygen plasma treatment with wet silanization to graft biomolecules onto nylon 6,6 3D porous scaffolds. Scaffolds that were exposed to oxygen plasma exhibited up to 13-fold increase in silane attachment ((3-mercaptopropyl)trimethoxysilane/(3-aminopropyl)trimethoxysilane) compared to untreated scaffolds. To address the limitation of nondestructive characterization of the surface chemistry of 3D scaffolds, fluorescent CdSe/ZnS nanoparticles were used as a reporting tool for -NH(2) functionalized surfaces. Scaffolds that were covalently bound with neutravidin protein remained stable in phosphate buffered saline up to four months. Functionality of the neutravidin-grafted scaffolds was demonstrated by the specific binding of CD4 cells to the scaffold via CD4-specific antibody. Ultimately, these neutravidin-functionalized 3D nylon scaffolds could be easily customized on demand utilizing a plethora of biotinylated biomolecules (antibodies, enzymes and proteins) to select for specific cell of interest. This technique can be extended to other applications, including the enhancement of cell-scaffold interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A group of α-lipoic acid N-phenylamides were synthesized employing a variety of amide coupling protocols utilizing electron deficient anilines. These compounds were then assessed for their ability to block androgen-stimulated proliferation of a human prostate cancer cell line, LNCaP. These structurally simple compounds displayed anti-proliferative activities at, typically, 5–20 μM concentrations and were comparable to a commonly used anti-androgen Bicalutamide®. The inclusion of a disulfide (RS-SR) moiety, serving as an anchor to several metal nanoparticle systems (Au, Ag, Fe2O3, etc.), does not impede any biological activity. Conjugation of these compounds to a gold nanoparticle surface resulted in a high degree of cellular toxicity, attributed to the absence of a biocompatible group such as PEG within the organic scaffold.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lineage-specific expansion of haematopoietic stem/progenitor cells (HSPCs) from human umbilical cord blood (UCB) is desirable because of their several applications in translational medicine, e.g. treatment of cancer, bonemarrowfailure and immunodeficiencies. The currentmethods forHSPC expansion use either cellular feeder layers and/or soluble growth factors and selected matrix components coated on different surfaces. The use of cell-free extracellular matrices from bone marrow cells for this purpose has not previously been reported. We have prepared insoluble, cell- free matrices from a murine bone marrow stromal cell line (MS-5) grown under four different conditions, i.e. in presence or absence of osteogenic medium, each incubated under 5% and 20% O2 tensions. These acellularmatrices were used as biological scaffolds for the lineage-specific expansion of magnetically sorted CD34+ cells and the results were evaluated by flow cytometry and colony-forming assays. We could get up to 80-fold expansion of some HSPCs on one of the matrices and our results indicated that oxygen tension played a significant role in determining the expansion capacity of the matrices. A comparative proteomic analysis of the matrices indicated differential expression of proteins, such as aldehyde dehydrogenase and gelsolin, which have previously been identified as playing a role in HSPC maintenance and expansion. Our approach may be of value in identifying factors relevant to tissue engineering-based ex vivo HSPC expansion, and itmay also provide insights into the constitution of the niche in which these cells reside in the bone marrow.