116 resultados para network model


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The peer-to-peer content distribution network (PCDN) is a hot topic recently, and it has a huge potential for massive data intensive applications on the Internet. One of the challenges in PCDN is routing for data sources and data deliveries. In this paper, we studied a type of network model which is formed by dynamic autonomy area, structured source servers and proxy servers. Based on this network model, we proposed a number of algorithms to address the routing and data delivery issues. According to the highly dynamics of the autonomy area, we established dynamic tree structure proliferation system routing, proxy routing and resource searching algorithms. The simulations results showed that the performance of the proposed network model and the algorithms are stable.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper studied a new type of network model; it is formed by the dynamic autonomy area, the structured source servers and the proxy servers. The new network model satisfies the dynamics within the autonomy area, where each node undertakes different tasks according to their different abilities, to ensure that each node has the load ability fit its own; it does not need to exchange information via the central servers, so it can carry out the efficient data transmission and routing search. According to the highly dynamics of the autonomy area, we established dynamic tree structure-proliferation system routing and resource-search algorithms and simulated these algorithms. Test results show the performance of the proposed network model and the algorithms are very stable.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The overall performance of a distributed system often depends on the effectiveness of its interconnection network. Thus, the study of the communication networks for distributed systems is very important, which is the focus of this paper. In particular, we address the problem of interconnection networks performance modeling for heterogeneous meta-computing systems. We consider the meta-computing system as a typical multi-cluster system. Since the heterogeneity is becoming common in such systems, we take into account network as well as cluster size heterogeneity to propose the model. To this end, we present an analytical network model and validate the model through comprehensive simulation. The results of the simulation demonstrated that the proposed model exhibits a good degree of accuracy for various system organizations and under different working conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper aims at developing a new criterion for quantitative assessment of prediction intervals. The proposed criterion is developed based on both key measures related to quality of prediction intervals: length and coverage probability. This criterion is applied as a cost function for optimizing prediction intervals constructed using delta technique for neural network model. Optimization seeks out to minimize length of prediction intervals without compromising their coverage probability. Simulated Annealing method is employed for readjusting neural network parameters for minimization of the new cost function. To further ameliorate search efficiency of the optimization method, parameters of the network trained using weight decay method are considered as the initial set in Simulated Annealing algorithm. Implementation of the proposed method for a real world case study shows length and coverage probability of constructed prediction intervals are better than those constructed using traditional techniques.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper a Neural Network Model was used to develop a ranking of the potential damage influences for light structures on expansive soils in Victoria. These influences include geology, Thornthwaite moisture index, vegetation covers, construction foundation type, construction wall type, geographical region and age of building when first inspected. Approximately 400 cases of damage to light structures in Victoria, Australia were considered in this study. Feedforward Backpropagation was adopted to train the data. The ranking of importance was estimated using connection weight approach and then compared to results calculated from sensitivity analysis. From the analysis, the ranking of importance for potential damage factor was noted.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Traffic congestion is one of the major problems in modern cities. This study applies machine learning methods to determine green times in order to minimize in an isolated intersection. Q-learning and neural networks are applied here to set signal light times and minimize total delays. It is assumed that an intersection behaves in a similar fashion to an intelligent agent learning how to set green times in each cycle based on traffic information. Here, a comparison between Q-learning and neural network is presented. In Q-learning, considering continuous green time requires a large state space, making the learning process practically impossible. In contrast to Q-learning methods, the neural network model can easily set the appropriate green time to fit the traffic demand. The performance of the proposed neural network is compared with two traditional alternatives for controlling traffic lights. Simulation results indicate that the application of the proposed method greatly reduces the total delay in the network compared to the alternative methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Increased concern about global warming coupled with the escalating demand of energy has driven the conventional power system to be more reliable one by integrating Renewable Energies (RE) in to grid. Over the recent years, integration of solar PV forming a gridconnected PV is considered as one of the most promisingtechnologies to the developed countries like Australia to meet the growing demand of energy. This rapid increase in grid connected photovoltaic (PV) systems has made the supply utilities concerned about the drastic effects that have to be considered on the distribution network in particular voltage fluctuations, harmonic distortions and the Power factor for sustainable power generation. However, irrespective of thefact that the utility grid can accommodate the variability of load or irregular solar irradiance, it is essential to study the impact of grid connected PV systems during higher penetration levels as the intermittent nature of solar PV adversely effects the grid characteristics in meeting the load demand. Hence, keeping this in track, this paper examines the grid-connected PV system considering a residential network of Geelong region (38◦.09' S and 144◦.21’ E) and explores the level of impacts considering summer load profile with a change in the level of integrations. Initially, a PV power system network model is developed in Matlab-Simulink environment and the simulations are carried out to explore the impacts of solar PV penetration at low voltage distribution network considering power quality (PQ) issues such as voltage fluctuations, harmonics distortion at different load conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Civil infrastructures are critical to every nation, due to their substantial investment, long service period, and enormous negative impacts after failure. However, they inevitably deteriorate during their service lives. Therefore, methods capable of assessing conditions and identifying damage in a structure timely and accurately have drawn increasing attention. Recently, compressive sensing (CS), a significant breakthrough in signal processing, has been proposed to capture and represent compressible signals at a rate significantly below the traditional Nyquist rate. Due to its sound theoretical background and notable influence, this methodology has been successfully applied in many research areas. In order to explore its application in structural damage identification, a new CS-based damage identification scheme is proposed in this paper, by regarding damage identification problems as pattern classification problems. The time domain structural responses are transferred to the frequency domain as sparse representation, and then the numerical simulated data under various damage scenarios will be used to train a feature matrix as input information. This matrix can be used for damage identification through an optimization process. This will be one of the first few applications of this advanced technique to structural engineering areas. In order to demonstrate its effectiveness, numerical simulation results on a complex pipe soil interaction model are used to train the parameters and then to identify the simulated pipe degradation damage and free-spanning damage. To further demonstrate the method, vibration tests of a steel pipe laid on the ground are carried out. The measured acceleration time histories are used for damage identification. Both numerical and experimental verification results confirm that the proposed damage identification scheme will be a promising tool for structural health monitoring.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Motor vehicle accidents are one of the main killers on the road. Modern vehicles have several safety features to improve the stability and controllability. The tire condition is critical to the proper function of the designed safety features. Under or over inflated tires adversely affects the stability of vehicles. It is generally the vehicle's user responsibility to ensure the tire inflation pressure is set and maintained to the required value using a tire inflator. In the tire inflator operation, the vehicle's user sets the desired value and the machine has to complete the task. During the inflation process, the pressure sensor does not read instantaneous static pressure to ensure the target value is reached. Hence, the inflator is designed to stop repetitively for pressure reading and avoid over inflation. This makes the inflation process slow, especially for large tires. This paper presents a novel approach using artificial neural network based technique to identify the tire size. Once the tire size is correctly identified, an optimized inflation cycle can be computed to improve performance, speed and accuracy of the inflation process. The developed neural network model was successfully simulated and tested for predicting tire size from the given sets of input parameters. The test results are analyzed and discussed in this paper.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For the operator of a power system, having an accurate forecast of the day-ahead load is imperative in order to guaranty the reliability of supply and also to minimize generation costs and pollution. Furthermore, in a restructured power system, other parties, like utility companies, large consumers and in some cases even ordinary consumers, can benefit from a higher quality demand forecast. In this paper, the application of smart meter data for producing more accurate load forecasts has been discussed. First an ordinary neural network model is used to generate a forecast for the total load of a number of consumers. The results of this step are used as a benchmark for comparison with the forecast results of a more sophisticated method. In this new method, using wavelet decomposition and a clustering technique called interactive k-means, the consumers are divided into a number of clusters. Then for each cluster an individual neural network is trained. Consequently, by adding the outputs of all of the neural networks, a forecast for the total load is generated. A comparison between the forecast using a single model and the forecast generated by the proposed method, proves that smart meter data can be used to significantly improve the quality of load forecast.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The hot strength of austenitic steels of different carbon contents was modelled using an artificial neural network (ANN) model with optimum training data. As training data employed in a traditional neural network model were randomly selected from experimental data, they were not representative and the prediction accuracy and efficiency were therefore significantly affected. In this work, only representatively experimental data were used for training and during the procedure, one tenth of the training data extracted from experiment were used for testing the training model and terminating the modelling. The effects of the carbon con tent on flow stress, peak strains and peak stresses observed from the experiment for both training and test data were accurately represented with the ANN scheme reported in this work.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Trust is a fundamental issue in multi-agent systems, especially when they are applied in e-commence. The computational models of trust play an important role in determining who and how to interact in open and dynamic environments. To this end, a computation trust model is proposed in which the confidence information based on direct prior interactions with the target agent and the reputation information from trust network are used. In this way, agents can autonomously deal with deception and identify trustworthy parties in multi-agent systems. The ontological property of trust is also considered in the model. A case study is provided to show the effectiveness of the proposed model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study evaluated the performance of multilayer perceptron (MLP) and multivariate linear regression (MLR) models for predicting the hairiness of worsted-spun wool yarns from various top, yarn and processing parameters. The results indicated that the MLP model predicted yarn hairiness more accurately than the MLR model, and should have wide mill specific applications. On the basis of sensitivity analysis, the factors that affected yarn hairiness significantly included yarn twist, ring size, average fiber length (hauteur), fiber diameter and yarn count, with twist having the greatest impact on yarn hairiness.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Modeling network traffic has been a critical task in the development of Internet. Attacks and defense are prevalent in the current Internet. Traditional network models such as Poisson-related models do not consider the competition behaviors between the attack and defense parties. In this paper, we present a microscopic competition model to analyze the dynamics among the nodes, benign or malicious, connected to a router, which compete for the bandwidth. The dynamics analysis demonstrates that the model can well describe the competition behavior among normal users and attackers. Based on this model, an anomaly attack detection method is presented. The method is based on the adaptive resonance theory, which is used to learn the model by normal traffic data. The evaluation shows that it can effectively detect the network attacks.