77 resultados para microbial blends


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cathodic disbondment (CD) performance of a range of modified polyethylenes (PE) compression molded on to steel plates at 320[degrees]C is reported. Adhesion strength was measured by the 90[degrees] peel test and good dry adhesion strength was obtained for all modified polyethylene materials and blends, as well as for the neat polymer. It is shown that dry bond strength does not correlate with CD performance. Initial results of wet peel tests of samples in various concentrations of NaOH are presented where it is observed that for samples with improved wet adhesion strength, CD performance was also Improved. Surface polarity was determined from contact angle measurements, and it is shown that increased surface polarity of the coating was not the only determinant for improved CD performance. Inorganic fillers such as talc were also found to improve CD performance by changing the bulk properties, with little measurable change in polarity. Some mechanistic aspects of CD performance are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methoxy-ethylene glycol methacrylates, CH2=CMeCOO(CH2CH2O)nMe (n = 1, 2, 3), ethoxy-triethylene glycol methacrylate, CH2=CMeCOO(CH2CH2O)3Et, and N,N-dimethylaminoethyl methacrylate, CH2=CMeCOOCH2CH2NMe2, were used to synthesise the corresponding polymers. Conductivities of these polymers complexed with lithium perchlorate were investigated. Tetraethylene glycol dimethyl ether was used as plasticiser to increase the conductivity of the materials. A conductivity of 10−5 S cm−1 was obtained at room temperature for the plasticised polymer samples. Effects of polymer structure, plasticiser, salt concentration and temperature on conductivity and glass transition temperature of the polymer electrolytes are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

α-Linseed, camelina. perilla, and echium oils are n-3 C18 polyunsaturated fatty acid (PUFA)-rich vegetable oil sources viewed as favorable replacements to fish oil in aquaculture feed (aquafeed) production in consideration of their high (α-linolenic acid (ALA, 18:3n-3) and/or stearidonic acid (SDA, 18:4n-3) contents and potential for subsequent bioconversion to n-3 long-chain polyunsaturated fatty acids (LC-PUFA) in farmed aquatic species. While the total production of these oils is currently low in comparison with that of other terrestrial oil sources, their distinct fatty acid composition and high n-3 to n-6 ratio deliver a unique substitute to fish oil in aquafeeds, presently unparalleled in other alternative terrestrial oil sources. The dietary inclusion of these oil sources has therefore attracted significant research attention, resulting in a multitude of investigations across a broad range of aquatic species (finfish and crustaceans). Generally, providing that the essential fatty acid (EFA) requirements of the species under investigation were met and an adequate level of fish meal was present in the diet, it was found possible to replace 100% and 60-70% of the dietary fish oil component for freshwater and marine species, respectively, with minimal impact on growth performance indices. However, the substitution of fish oil with n-3-rich vegetable oils and/or vegetable oil blends resulted in substantially reduced concentrations of health-promoting eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) in the edible portion of the farmed species. This chapter provides an overview of the use of n-3 PUFA-rich vegetable oils and/or vegetable oil blends for use in aquafeeds. In particular, key aspects of oil production, processing, and refinement will be presented, and individual differences pertaining to the physical, chemical, and nutritional characteristics of the oil types will be highlighted. Following on from this, a summary of the key findings relevant to n-3 PUFA-rich vegetable oil inclusion in aquafeeds will be discussed, with particular emphasis placed on growth performance and nutritional modification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microphase separation induced by competitive hydrogen bonding interactions in double crystalline diblock copolymer/homopolymer blends was studied for the first time. Poly(ethylene oxide)- block-poly(e-caprolactone) (PEO-b-PCL)/poly(4-vinylphenol) (PVPh) blends were prepared in tetrahydrofuran. The diblock copolymer PEO-b-PCL consists of two immiscible crystallizable blocks wherein bothPEO and PCL blocks can form hydrogen bonds with PVPh. In these A-b-B/C diblock copolymer homopolymer blends, microphase separation takes place due to the disparity in intermolecular interactions; specifically, PVPh and PEO block interact strongly whereas PVPh and PCL block interact weakly. The TEM and SAXS results show that the cubic PEO-b-PCL diblock copolymer changes into ordered hexagonal cylindrical morphology upon addition of 20 wt % PVPh followed by disordered bicontinuous phase in the blend with 40 wt % PVPh and then to homogeneous phase at 60 wt % PVPh and above blends. Up to 40 wt % PVPh there is only weak interaction between PVPh and PCL due to the selective hydrogen bonding between PVPh and PEO. However, with higher PVPh concentration, the blends become homogeneous since a sufficient amount of PVPh is available to form hydrogen bonds with both PEO and PCL. A structural model was proposed to explain the self-assembly and microphase morphology of these blends based on the experimental results obtained. The formation of nanostructures and changes in morphologies depend on the relative strength of hydrogen bonding interaction between each block of the block copolymer and the homopolymer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe zwitterion, 3-(1-butyl-1H-imidazol-3-ium-3-yl)propane-1-sulfonate (Bimps), mixtures with 1,1,1-trifluoro-N-(trifluoromethylsulfonyl)methanesulfoneamide (HN(Tf)2) as new proton transport electrolytes. We report proton transport mechanisms in the mixtures based on results from several methods including thermal analyses, the complex-impedance method, and the pulsed field gradient spin echo NMR (pfg-NMR) method. The glass transition temperature (Tg) of the mixtures decreased with increasing HN(Tf)2 concentration up to 50 mol %. The Tg remained constant at −55 °C with further acid doping. The ionic conductivity of HN(Tf)2 mixtures increased with the HN(Tf)2 content up to 50 mol %. Beyond that ratio, the mixtures showed no increase in ionic conductivity (10−4 S cm−1 at room temperature). This tendency agrees well with that of Tg. However, the self-diffusion coefficients obtained from the pfg-NMR method increased with HN(Tf)2 content even above 50 mol % for all component ions. At HN(Tf)2 50 mol %, the proton diffusion of HN(Tf)2 was the fastest in the mixture. These results suggest that Bimps cannot dissociate excess HN(Tf)2, that is, the excess HN(Tf)2 exists as molecular HN(Tf)2 in the mixtures. The zwitterion, Bimps, forms a 1:1 complex with HN(Tf)2 and the proton transport property in this mixture is superior to those of other mixing ratios. Furthermore, CH3SO3H and CF3SO3H were mixed with Bimps for comparison. Both systems showed a similar tendency, which differed from that of the HN(Tf)2 system. The Tg decreased linearly with increasing acid content for every mixing ratio, while the ionic conductivity increased linearly. Proton transport properties in zwitterion/acid mixtures were strongly affected by the acid species added.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report microphase separation induced by competitive hydrogen bonding interactions in double crystalline diblock copolymer/homopolymer blends of poly(ethylene oxide)-block-poly(ɛ-caprolactone) (PEO-b-PCL) and poly(4-vinyl phenol) (PVPh). The diblock copolymer PEO-b-PCL consists of two immiscible crystallizable blocks wherein both PEO and PCL blocks can form hydrogen bonds with PVPh. In these A-b-B/C diblock copolymer/homopolymer blends, microphase separation takes place due to the disparity in intermolecular interactions; specifically PVPh and PEO block interact strongly whereas PVPh and PCL block interact weakly. The TEM and SAXS results show that the cubic PEO-b-PCL diblock copolymer changes into ordered hexagonal cylindrical morphology upon addition of 20 wt % PVPh followed by disordered bicontinuous phase in the blend with 40 wt % PVPh and then to homogenous phase at 60 wt% PVPh and above. Up to 40 wt % PVPh there is only weak interaction between PVPh and PCL due to the selective hydrogen bonding between PVPh and PEO. However, with higher PVPh concentration, the blends become homogeneous since a sufficient amount of PVPh is available to form hydrogen bonds with both PEO and PCL. A structural model was proposed to explain the self-assembly and morphology of these blends based on the experimental results obtained. The formation of nanostructures and changes in morphologies depend on the relative strength of hydrogen bonding interaction between each block of the block copolymer and the homopolymer (1-3).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small angle X-ray scattering (SAXS) is useful to explain the formation of microstructures and the mechanism of microphase separation in self-assembled blends and complexes. In our study, we have used SAXA to examine the ordered and disordered nanostructures as well as morphological transitions in block copolymer/homopolymer blends and complexes [1,2].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, nanostructured blends were prepared from double crystalline diblock copolymer poly(ɛ-caprolactone)-block-poly(ethylene oxide) and homopolymer poly(4-vinyl phenol) (PVPh). The diblock copolymer PEO-b-PCL consists of two immiscible crystallizable blocks wherein both PEO and PCL blocks can form hydrogen bonds with PVPh. In these A-b-B/C diblock copolymer/homopolymer blends, microphase separation takes place due to the disparity in intermolecular interactions; specifically, PVPh and PEO block interact strongly whereas PVPh and PCL block interact weakly. The TEM and SAXS results show that the cubic PEO-b-PCL diblock copolymer changes into ordered hexagonal cylindrical morphology upon addition of 20 wt % PVPh followed by disordered bicontinuous phase in the blend with 40 wt % PVPh and then to homogeneous phase at 60 wt % PVPh and above blends. Up to 40 wt % PVPh there is only weak interaction between PVPh and PCL due to the selective hydrogen bonding between PVPh and PEO. However, with higher PVPh concentration, the blends become homogeneous since a sufficient amount of PVPh is available to form hydrogen bonds with both PEO and PCL. A structural model was proposed to explain the self-assembly and microphase morphology of these blends based on the experimental results obtained. The formation of nanostructures and changes in morphologies depend on the relative strength of hydrogen bonding interaction between each block of the block copolymer and the homopolymer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Block copolymers are of particular interest due to their ability to form a rich variety of nanostructures via self-assembly [1]. The self-assembly via competitive hydrogen bonding is a novel concept which is based on the competition between different blocks of the block copolymer to form more than one kind of intermolecular interaction with the complimentary polymer in the system. Recently, Guo and co-workers have proven that careful selection of the polymers specifically the block copolymer, and the experimental conditions can lead to self-assembled structures in blends and complexes exhibiting competitive hydrogen bonding [2-5].