50 resultados para merozoite surface protein 1


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is an increasing use of herbal medicines worldwide, and the extracts from the root of Salvia miltiorrhiza are widely used in the treatment of angina and stroke. In this study, we investigated the mechanism for the intestinal absorption of tanshinone IIB (TSB), a major constituent of S. miltiorrhiza. The oral bioavailability of TSB was about 3% in rats with less proportional increase in its maximum plasma concentration (Cmax) and area under the plasma concentration-time curve (AUC) with increasing dosage. The time to Cmax (Tmax) was prolonged at higher oral dosage. In a single pass rat intestinal perfusion model, the permeability coefficients (Papp) based on TSB disappearance from the lumen (Plumen) were 6.2- to 7.2-fold higher (p < 0.01) than those based on drug appearance in mesenteric venous blood (Pblood). The uptake and efflux of TSB in Caco-2 cells were also significantly altered in the presence of an inhibitor for P-glycoprotein (PgP) or for multi-drug resistance associated protein (MRP1/2). TSB transport from the apical (AP) to basolateral (BL) side in Caco-2 monolayers was 3.3- to 5.7-fold lower than that from BL to AP side, but this polarized transport was attenuated by co-incubation of PgP or MRP1/2 inhibitors. The Papp values of TSB in the BL-AP direction were significantly higher in MDCKII cells over-expressing MDR1 or MRP1, but not in cells over-expressing MRP2-5, as compared with the wild-type cells. The plasma AUC0-24hr in mdr1a and mrp1 gene-deficient mice was 10.2- to 1.7-fold higher than that in the wild-type mice. Furthermore, TSB significantly inhibited the uptake of digoxin and vinblastine in membrane vesicles containing PgP or MRP1. TSB also moderately stimulated PgP ATPase activity. Taken collectively, our findings indicate that TSB is a substrate for PgP and MRP1 and that drug resistance to TSB therapy and drug interactions may occur through PgP and MRP1 modulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cryptotanshinone (CTS), a major constituent from the roots of Salvia miltiorrhiza (Danshen), is widely used in the treatment of coronary heart disease, stroke and less commonly Alzheimer's disease. Our recent study indicates that CTS is a substrate for Pglycoprotein (PgP/MDR1/ABCB1). This study has investigated the nature of the brain distribution of CTS across the brain-blood barrier (BBB) using several in vitro and in vivo rodent models. A polarized transport of CTS was found in rat primary microvascular endothelial cell (RBMVEC) monolayers, with facilitated efflux from the abluminal side to luminal side. Addition of a PgP (e.g. verapamil and quinidine) or multi-drug resistance protein 1/2 (MRP1/2) inhibitor (e.g. probenecid and MK-571) in both luminal and abluminal sides attenuated the polarized transport. In a bilateral in situ brain perfusion model, the uptake of CTS into the cerebrum increased from 0.52 ± 0.1% at 1 min to 11.13 ± 2.36 ml/100 g tissue at 30 min and was significantly greater than that of sucrose. Co-perfusion of a PgP/MDR1 (e.g. verapamil) or MRP1/2 inhibitor (e.g. probenecid) significantly increased the brain distribution of CTS by 35.1-163.6%. The brain levels of CTS were only about 21% of those in plasma, and were significantly increased when coadministered with verapamil or probenecid in rats. The brain levels of CTS in rats subjected to middle cerebral artery occlusion and rats treated with quinolinic acid (a neurotoxin) were about 2- to 2.5-fold higher than the control rats. Moreover, the brain levels in mdr1a(-/-) and mrp1(-/-) mice were 10.9- and 1.5-fold higher than those in the wild-type mice, respectively. Taken collectively, these findings indicate that PgP and Mrp1 limit the brain penetration of CTS in rodents, suggesting a possible role of PgP and MRP1 in limiting the brain penetration of CTS in patients and causing drug resistance to Danshen therapy and interactions with conventional drugs that are substrates of PgP and MRP1. Further studies are needed to explore the role of other drug transporters in restricting the brain penetration of CTS and the clinical relevance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rationale: The molecular mechanisms of muscle atrophy in chronic obstructive pulmonary disease (COPD) are poorly understood. In wasted animals, muscle mass is regulated by several AKT-related signaling pathways.
Objectives: To measure the protein expression of AKT, forkhead box class O (FoxO)-1 and -3, atrogin-1, the phosphophrylated form of AKT, p70S6K glycogen synthase kinase-3ß (GSK-3ß), eukaryotic translation initiation factor 4E binding protein-1 (4E-BP1), and the mRNA expression of atrogin-1, muscle ring finger (MuRF) protein 1, and FoxO-1 and -3 in the quadriceps of 12 patients with COPD with muscle atrophy and 10 healthy control subjects. Five patients with COPD with preserved muscle mass were subsequently recruited and were compared with six patients with low muscle mass.
Methods: Protein contents and mRNA expression were measured by Western blot and quantitative polymerase chain reaction, respectively.
Measurements and Main Results: The levels of atrogin-1 and MuRF1 mRNA, and of phosphorylated AKT and 4E-BP1 and FoxO-1 proteins, were increased in patients with COPD with muscle atrophy compared with healthy control subjects, whereas atrogin-1, p70S6K, GSK-3ß, and FoxO-3 protein levels were similar. Patients with COPD with muscle atrophy showed an increased expression of p70S6K, GSK-3ß, and 4E-BP1 compared with patients with COPD with preserved muscle mass.
Conclusions: An increase in atrogin-1 and MuRF1 mRNA and FoxO-1 protein content was observed in the quadriceps of patients with COPD. The transcriptional regulation of atrogin-1 and MuRF1 may occur via FoxO-1, but independently of AKT. The overexpression of the muscle hypertrophic signaling pathways found in patients with COPD with muscle atrophy could represent an attempt to restore muscle mass.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Biliary tract infection is associated with high mortality. This study investigated the effect of glucocorticoid pretreatment on lipopolysaccharide (LPS)-induced cholangitis. Methods: Rats undergoing either sham operation or ligation of the extrahepatic bile duct (BDL) for 2 weeks were randomly assigned to receive intravenous injections of dexamethasone (DX) or normal saline (NS) prior to infusing LPS into the biliary tract. The plasma levels of tumor necrosis factor-α (TNFα), chemokines monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-2 (MIP-2) as well as liver mRNA expression of MCP-1 and MIP-2 were determined. Infiltration of monocytes, Kupffer cells, and neutrophils in rat liver were studied with immunohistochemistry. Oxidative liver injury was measured by the malondialdehyde (MDA) content. Results: Dexamethasone pretreatment resulted in significantly decreased plasma levels of TNFα at 1 hour, MCP-1 and MIP-2 at 2 and 3 hours, and decreased liver MCP-1 mRNA expression at 3 hours following LPS infusion in BDL-DX rats than in BDL-NS rats. The number of inflammatory cells in the liver was significantly different between sham- and BDL-treated rats but was not affected by DX pretreatment. Pretreatment with DX resulted in significantly decreased liver MDA contents in the BDL-DX group than that in the BDL-NS group. Jaundiced rats pretreated with 5 mg DX prior to infusion of 1 g of LPS were 6.8 times more likely to survive than those that were not pretreated. Conclusions: Pretreatment of jaundiced, LPS-treated rats with a  supraphysiological dose of dexamethasone may rescue their lives by suppression of chemokine expression and alleviation of oxidative liver injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three pairs of parental (ρ+) and established mitochondrial DNA depleted (ρ0) cells, derived from bone, lung and muscle were used to verify the influence of the nuclear background and the lack of efficient mitochondrial respiratory chain on antioxidant defences and homeostasis of intracellular reactive oxygen species (ROS). Mitochondrial DNA depletion significantly lowered glutathione reductase activity, glutathione (GSH) content, and consistently altered the GSH2 : oxidized glutathione ratio in all of the ρ0 cell lines, albeit to differing extents, indicating the most oxidized redox state in bone ρ0 cells. Activity, as well as gene expression and protein content, of superoxide dismutase showed a decrease in bone and muscle ρ0 cell lines but not in lung ρ0 cells. GSH peroxidase activity was four times higher in all three ρ0 cell lines in comparison to the parental ρ+, suggesting that this may be a necessary adaptation for survival without a functional respiratory chain. Taken together, these data suggest that the lack of respiratory chain prompts the cells to reduce their need for antioxidant defences in a tissue-specific manner, exposing them to a major risk of oxidative injury. In fact bone-derived ρ0 cells displayed the highest steady-state level of intracellular ROS (measured directly by 2',7'-dichlorofluorescin, or indirectly by aconitase activity) compared to all the other ρ+ and ρ0 cells, both in the presence or absence of glucose. Analysis of mitochondrial and cytosolic/iron regulatory protein-1 aconitase indicated that most ROS of bone ρ0 cells originate from sources other than mitochondria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By the use of the yeast two-hybrid screen we have identified two proteins that interacted with UCH37: S14, which is a subunit of PA700 and a novel protein, UIP1 (UCH37 interacting protein 1). The interaction of UCH37 with S14 or UIP1 was confirmed by in vitro binding assay and in vivo co-immunoprecipitation analysis. The C-terminal extension of UCH37 is essential for interaction with S14 or UIP1 as shown by the yeast two-hybrid assay and the in vitro binding assay. Furthermore, UIP1 blocked the interaction between UCH37 and S14 in vitro.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background
Intervention of the biliary system is frequently done in patients with obstructive jaundice and is associated with significant morbidity and mortality. The pathogenesis is unknown.
Materials and methods
A rat model of bile duct ligation (BDL) for 2 weeks was established in which biliary intervention was feasible by injection of normal saline through an indwelling catheter in the bile ducts. Plasma levels of C-C chemokine MCP-1 and C-X-C chemokine MIP-2 were measured by using ELISA. Blood monocytes, Kupffer cells, and neutrophils in the liver were characterized with antibodies to ED1, ED2, and myeloperoxidase (MPO). Lipid peroxidation was measured by malondialdehyde contents and apoptosis by TUNEL stain of the liver.
Results
Biliary intervention resulted in an increase of plasma MCP-1 and MIP-2 proteins by 1 h, which declined to normal level by 3 h in both sham and BDL rats. The levels in BDL rats were significantly higher than in sham at most points. There was a transient increase of ED1- and ED2-positive cells and MPO-staining cells in sham rat liver by 1 h after intervention. ED2-positive cells increased significantly by 1 h, while ED1- and MPO-positive cells decreased, yet insignificantly after intervention in BDL rats. The cell counts in BDL were constantly higher than in sham. Malondialdehyde increased precipitously in BDL by 3 h and was significantly higher than in sham throughout the study period. Parenchymal liver injury, manifested by elevated ALT, as well as apoptosis and necrosis of liver cells, was significantly increased in BDL rats, but not in sham rats.
Conclusion
Biliary intervention augments chemokine expression, precipitates lipid peroxidation, and aggravates liver injury in cholestatic rats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermoregulatory responses of subjects wearing two different forms of rugby league jersey, one with plastic sponsorship recognition and numbering (trial Gl) and one without (trial G2), and a lightweight alternative (trial G3), were compared with a trial without any form of upper body garment (trial GO). Ten male volunteers, mean age 20.9 (±2.3) years, height 179.8 (±4.7) cm, weight 80.2 (±8.9) kg, and body surface area 1.99 (±0.13) m2, participated in this study. Subjects had a mean maximal oxygen uptake capacity of 56.0 (±6.3) ml.kg.min-1 and a sum of 8 skinfolds of 80.6 (±23.8) mm. Subjects were exercised at approximately 50% of maximal oxygen uptake in a warm humid environment for 50 minutes. Mean ambient temperature was 27.6°C (±0.32) with a relative humidity of 64.7% (±1.44). Measurements of core and skin (7 sites) temperature, heart rate, oxygen uptake, plasma volume, peak lactate concentration, and pre- and post-trial body weight, hematocrit and garment weight were recorded. The statistical results showed that all subjects experienced significant (p ≤.0001) decreases in body weight representing a percentage decrease ranging from 1.2-1.3%. No significant difference was found between trials with respect to body weight change. No significant effect of garment type was found on pre- and post-trial hematocrit, plasma volume changes or peak blood lactic acid concentration. However, mean peak lactate was highest for trial Gl (5.6 mmol.L-1 ±2.2) and lowest for trial G3 (4.6 mmol.L-1 ±1.27). Post-trial core temperature was significantly (p≤ .0001) higher than the resting value; no significant difference was found between trials. The mean absolute increase for all experimental trials was 0.9°C. A significant (p≤.005) difference between mean total (7 sites) skin temperature was found with a post-hoc test revealing that trials Gl and G2 were significantly higher than trial GO; no significant difference was found when comparing trial G3 with trial GO or when comparing the garments between each other. Mean skin temperature under the garment (4 sites) was found to be significantly (p≤.05) higher for all trials involving a garment when compared with mean skin temperature outside (3 sites) the garment; no significant difference was found between trials. Mean oxygen uptake was significantly different between trials (p≤.005), with trial Gl and G3 found to be significantly lower than trial GO; no difference was found when comparing the garments with each other. Post-trial garment weights were significantly (p≤.001) heavier than pre-trial and were significantly (p≤.0001) different when compared with each other. There was no significant effect on heart rate, haematocrit, plasma volume changes, peak blood lactic acid concentration, or core temperature due to garment type. However, differences in skin temperature suggest that the garment used in trial G3 may have a benefit. Further research should consider the impact of increased exercise intensity and/or environmental temperature and humidity on the measured parameters while wearing the garments described in this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background : Lipid droplet (LD) formation and size regulation reflects both lipid influx and efflux, and is central in the regulation of adipocyte metabolism, including adipokine secretion. The length and degree of dietary fatty acid (FA) unsaturation is implicated in LD formation and regulation in adipocytes. The aims of this study were to establish the impact of eicosapentaenoic acid (EPA; C20:5n-3) in comparison to SFA (STA; stearic acid, C18:0) and MUFA (OLA; oleic acid, C18:1n-9) on 3T3-L1 adipocyte LD formation, regulation of genes central to LD function and adipokine responsiveness. Cells were supplemented with 100 μM FA during 7-day differentiation.

Results : EPA markedly reduced LD size and total lipid accumulation, suppressing PPARγ, Cidea and D9D/SCD1 genes, distinct from other treatments. These changes were independent of alterations of lipolytic genes, as both EPA and STA similarly elevated LPL and HSL gene expressions. In response to acute lipopolysaccharide exposure, EPA-differentiated adipocytes had distinct improvement in inflammatory response shown by reduction in monocyte chemoattractant protein-1 and interleukin-6 and elevation in adiponectin and leptin gene expressions.

Conclusions : This study demonstrates that EPA differentially modulates adipogenesis and lipid accumulation to suppress LD formation and size. This may be due to suppressed gene expression of key proteins closely associated with LD function. Further analysis is required to determine if EPA exerts a similar influence on LD formation and regulation in-vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study presents a new computational method for guanine (G) and cytosine (C), or GC, content profiling based on the idea of multiple resolution sampling (MRS). The benefit of our new approach over existing techniques follows from its ability to locate significant regions without prior knowledge of the sequence, nor the features being sought. The use of MRS has provided novel insights into bacterial genome composition. Key findings include those that are related to the core composition of bacterial genomes, to the identification of large genomic islands (in Enterobacterial genomes), and to the identification of surface protein determinants in human pathogenic organisms (e.g., Staphylococcus genomes). We observed that bacterial surface binding proteins maintain abnormal GC content, potentially pointing to a viral origin. This study has demonstrated that GC content holds a high informational worth and hints at many underlying evolutionary processes. For online Supplementary Material, see www.liebertonline.com.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen chronically infecting the lungs of patients with chronic obstructive pulmonary disease (COPD), pneumonia, cystic fibrosis (CF), and bronchiectasis. Cif (PA2934), a bacterial toxin secreted in outer membrane vesicles (OMV) by P. aeruginosa, reduces CFTR-mediated chloride secretion by human airway epithelial cells, a key driving force for mucociliary clearance. The aim of this study was to investigate the mechanism whereby Cif reduces CFTR-mediated chloride secretion. Cif redirected endocytosed CFTR from recycling endosomes to lysosomes by stabilizing an inhibitory effect of G3BP1 on the deubiquitinating enzyme (DUB), USP10, thereby reducing USP10-mediated deubiquitination of CFTR and increasing the degradation of CFTR in lysosomes. This is the first example of a bacterial toxin that regulates the activity of a host DUB. These data suggest that the ability of P. aeruginosa to chronically infect the lungs of patients with COPD, pneumonia, CF, and bronchiectasis is due in part to the secretion of OMV containing Cif, which inhibits CFTR-mediated chloride secretion and thereby reduces the mucociliary clearance of pathogens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim:  Production of reactive oxygen species (ROS) in skeletal muscle is markedly increased during exercise and may be essential for exercise adaptation. We, therefore, investigated the effects of infusion with the antioxidant N-acetylcysteine (NAC) on exercise-induced activation of signalling pathways and genes involved in exercise adaptation in human skeletal muscle.

Methods:  Subjects completed two exercise tests, 7 days apart, with saline (control, CON) or NAC infusion before and during exercise. Exercise tests comprised of cycling at 71%inline image2peak for 45 min, and then 92% \dot{{V}}\hbox{O}2peak to fatigue, with vastus lateralis biopsies at pre-infusion, after 45-min cycling and at fatigue.

Results:  Analysis was conducted on the mitogen-activated protein kinase signalling pathways, demonstrating that NAC infusion blocked the exercise-induced increase in JNK phosphorylation, but not ERK1/2, or p38 MAPK. Nuclear factor-κB p65 phosphorylation was unaffected by exercise; however, it was reduced in NAC at fatigue by 14% (P < 0.05) compared with pre-infusion. Analysis of exercise and/or ROS-sensitive genes demonstrated that exercise-induced mRNA expression is ROS dependent of MnSOD, but not PGC-1α, interleukin-6, monocyte chemotactic protein-1, or heat-shock protein 70.

Conclusion:  These results suggest that inhibition of ROS attenuates some skeletal muscle cell signalling pathways and gene expression involved in adaptations to exercise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims/hypothesis Supraphysiological levels of the amyloidogenic peptide human islet amyloid polypeptide have been associated with beta cell endoplasmic reticulum (ER) stress. However, in human type 2 diabetes, levels of human IAPP are equivalent or decreased relative to matched controls. Thus, we sought to investigate whether ER stress is induced during amyloidogenesis at physiological levels of human IAPP.

Methods Islets from human IAPP transgenic mice that develop amyloid, and non-transgenic mice that do not, were cultured for up to 7 days in 11.1, 16.7 and 33.3 mmol/l glucose. Pancreases from human IAPP transgenic and non-transgenic mice and humans with or without type 2 diabetes were also evaluated. Amyloid formation was determined histologically. ER stress was determined in islets by quantifying mRNA levels of Bip, Atf4 and Chop (also known as Ddit3) and alternate splicing of Xbp1 mRNA, or in pancreases by immunostaining for immunoglobulin heavy chain-binding protein (BIP), C/EBP homologous protein (CHOP) and X-box binding protein 1 (XBP1).

Results Amyloid formation in human IAPP transgenic islets was associated with reduced beta cell area in a glucose- and time-dependent manner. However, amyloid formation was not associated with significant increases in expression of ER stress markers under any culture condition. Thapsigargin treatment, a positive control, did result in significant ER stress. Amyloid formation in vivo in pancreas samples from human IAPP transgenic mice or humans was not associated with upregulation of ER stress markers.

Conclusions/interpretation Our data suggest that ER stress is not an obligatory pathway mediating the toxic effects of amyloid formation at physiological levels of human IAPP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Haemoglobin degradation during the erythrocytic life stages is the major function of the food vacuole (FV) of Plasmodium falciparum and the target of several anti-malarial drugs that interfere with this metabolic pathway, killing the parasite. Two multi-spanning food vacuole membrane proteins are known, the multidrug resistance protein 1 (PfMDR1) and Chloroquine Resistance Transporter (PfCRT). Both modulate resistance to drugs that act in the food vacuole. To investigate the formation and behaviour of the food vacuole membrane we have generated inducible GFP fusions of chloroquine sensitive and resistant forms of the PfCRT protein. The inducible expression system allowed us to follow newly-induced fusion proteins, and corroborated a previous report of a direct trafficking route from the ER/Golgi to the food vacuole membrane. These parasites also allowed the definition of a food vacuole compartment in ring stage parasites well before haemozoin crystals were apparent, as well as the elucidation of secondary PfCRT-labelled compartments adjacent to the food vacuole in late stage parasites. We demonstrated that in addition to previously demonstrated Brefeldin A sensitivity, the trafficking of PfCRT is disrupted by Dynasore, a non competitive inhibitor of dynamin-mediated vesicle formation. Chloroquine sensitivity was not altered in parasites over-expressing chloroquine resistant or sensitive forms of the PfCRT fused to GFP, suggesting that the PfCRT does not mediate chloroquine transport as a GFP fusion protein.