71 resultados para irrigation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To meet the anticipated increase in global demand for food and fibre products, large areas of land around the world are being cleared and infrastructure constructed to enable irrigation, referred to herein as ‘greenfield irrigation’. One of the challenges in assessing the profitability of a greenfield irrigation development is understanding the impact of variability in climate and water availability and the trade-offs with scheme size, cost and the sensitivity of crop yield to water stress. For example, is it more profitable to irrigate a small area of land most years or a large area once every few years? And, is it more profitable to partially or fully water the crop? This paper presents a new method for efficiently linking a river system model and an agricultural production model to explore the financial trade-offs of different management choices, thereby enabling the optimal scheme area and most appropriate level of farmer risk to be identified. The method is demonstrated for a hypothetical but plausible greenfield irrigation development based around a large dam in the Flinders catchment, northern Australia. It was found that a dam and irrigation development paid for and operated by the same entity is not, under the conditions examined in this analysis, economically sustainable. The method could also be used to explore the impact of different management strategies on the agricultural production and profitability of existing irrigation schemes within a whole of river system context.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arsenic contaminated water from tube wells has become the major health problem threatening millions of people in Bangladesh. However, the arsenic (As) contaminated water is not just used for drinking, it is used to irrigate crops, and to wash and prepare food. Contamination of agricultural soils by long-term irrigation with As contaminated water can lead to contamination and phyto-accumulation of the food crops with As and other toxic metals. As a consequence, dietary exposure to As and other toxic metals may contribute substantially to the adverse health effects caused by the contaminated tube wells in Bangladesh. Various vegetables, rice, pulses and the grass pea were sampled in Samta village in the Jessore district of Bangladesh and screened for As, Cd, Cu, Pb and Zn by inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry. These local food crops provide the majority of the nutritional intake of the people in this area and are of great importance to their overall health. In general, our data show the potential for some vegetables to accumulate heavy metals with concentrations of Pb greater than Cd. The concentrations of As and Cd were higher in vegetables than in rice and pulses. The concentration of Pb was generally higher in rice than in pulses and vegetables. However, some vegetables such as bottle ground leaf, ghotkol, taro, eddoe and elephant foot had much higher concentrations of Pb. Other leafy and root vegetables contained higher concentrations oJ2n and Cu. Rice grown at Samta had increased Pb and As, but, considering an average daily intake of only 260 g rice per person per day, only the Pb is at concentrations which would be a health hazard/or human consumption.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reuse of treated sewage effluent for the irrigation of horticultural crops is being propounded and practiced as a means of alleviating pressure on freshwater resources. Concerns have been raised. however, as to the risk to human health, primarily disease, associated with this practice. Quantitative Microbial Risk Assessment (QMRA) is a useful tool for estimating this risk. We describe how QMRA works and the current state of knowledge of the components of QMRA models for the horticultural reuse scenario.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drinking of arsenic (As) contaminated well water has become a serious threat to the health of many millions in Bangladesh. However, the implications of contamination of agricultural soils from long-term irrigation with As-contaminated groundwater for phyto-accumulation in food crops, and thence dietary exposure to As, and other metals, has not been assessed previously in Bangladesh. Various vegetables were sampled in Samta village in the Jessore district of Bangladesh, and screened for As, Cd, Pb, Cu and Zn by inductively coupled plasma emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). These local food products are the basis of human nutrition in this region and of great relevance to human health. The results revealed that the individual vegetables containing the highest mean As concentrations (μg g−1) are snake gourd (0.489), ghotkol (0.446), taro (0.440), green papaya (0.389), elephant foot (0.338) and Bottle ground leaf (0.306), respectively. The As concentration in fleshy vegetable material is low. In general, the data show the potential for some vegetables to accumulate heavy metals with concentrations of Pb greater than Cd. Some vegetables such as bottle ground leaf, ghotkol, taro, eddoe and elephant foot had much higher concentrations of Pb. Other leafy and root vegetables, contained higher concentrations of Zn and Cu. Bioconcentration factors (BCF) values, based on dry weight, were below 1 for all metals. In most cases, BCF values decreased with increasing metal concentrations in the soil. From the heavily As-contaminated village in Samta, BCF values for As in ladies finger, potato, ash gourd, brinjal, green papaya, ghotkol and snake gourd were 0.001, 0.006, 0.006, 0.014, 0.030, 0.034 and 0.038, respectively. Considering the average daily intake of fresh vegetables per person per day is only 130 g, all the vegetables grown at Samta had Pb concentrations that would be a health hazard for human consumption. Although the total As in the vegetables was less than the recommended maximum intake of As, it still provides a significant additional source of As in the diet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose – The aim of this paper is to provide a critical evaluation of the potential of new institutional economics (NIE) in third world development.

Design/methodology/approach – The paper reviews various theories under NIE from both conceptual and empirical perspectives. It then reviews the various definitions of institutions and show that institutions are essential to overcome problems of information and uncertainty.

Findings – The review finds that weak institutions can undermine development and hence governments in developing countries should strengthen their institutions to provide greater scope for efficient functioning of markets. Where the market does not work owing to high transactions costs, traditional institutions of collective action and group decision making can work and hence need to be recognised.

Research limitations/implications – The major implications of the paper is that in developing countries, a clear understanding of various institutions such as user groups, inter-linked credit markets, rotational irrigation etc. is needed before they are replaced or modified by other institutions. The main limitations of NIE are that there can be capture by elites of various institutional innovations in rural areas, and that it does not explicitly consider income distribution and uncertainty which are glossed over and hence remain areas for future research.

Originality/value – This paper critically reviews the various institutional environments that developing countries face in addressing development issues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is generally accepted that institutional problems have severely constrained development in many countries regardless of significant achievements in technology and other reforms. Both the Old and New Institutional Economics have relevance in understanding the lack of progress in many countries in Asia and Africa. Institutions generally refer to the "framework within which human interactions take place. Two major strands of NIE are the transaction costs and the collective action approach. The NIE implies that traditional rural institutions such as user groups, rotating credit and irrigation associations, interlinked credit etc. are institutions that have emerged in place of the market due to lower transactions costs. The successful management of common property resources such as water, forests, wetlands etc using local arrangements imply that institutions need to be interpreted in broader terms and the simple dichotomy of market or the government is too limited to understand the development process. New thinking is required in developing institutions that are structurally suited for management at the local level. Such an approach will have better chance to succeed compared to a process based upon the market.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wastewater reuse is being widely promulgated to help address the global freshwater resource crisis. It can assist in reducing extraction of freshwater from the environment, and reuse of wastewater lessens the need for environmental discharge, which is clearly beneficial to receiving waters. But the practice itself also has the potential to be detrimental to natural and human environments: soil structure can become degraded, aquifers may be polluted, and human health may be threatened. The challenge facing natural resource managers is to identify the potential benefits and risks, and to achieve an appropriate balance. This paper describes environmental benefits and threats concomitant with the reuse of wastewater. We frequently draw upon examples from China and Australia-two countries that face particularly daunting water resource
challenges-but the principles can be.extended far beyond these geographical bounds and are applicable to
many parts of the world.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of reclaimed wastewater for irrigation of horticultural crops is commonplace in many parts of the world and is likely to increase. Concerns about risks to human health arising from such practice, especially with respect to infection with microbial pathogens, are common. Several factors need to be considered when attempting to quantify the risk posed to a population, such as the concentration of pathogens in the source water, water treatment efficiency, the volume of water coming into contact with the crop, and the die-off rate of pathogens in the environment. Another factor, which has received relatively less attention, is the amount of food consumed. Plainly, higher consumption rates place one at greater risk of becoming infected. The amount of vegetables consumed is known to vary among ethic groups. We use Quantitative Microbial Risk Assessment Modelling (QMRA) to see if certain ethnic groups are exposed to higher risks by virtue of their consumption behaviour. The results suggest that despite the disparities in consumption rates by different ethnic groups they generally all faced comparable levels of risks. We conclude by suggesting that QMRA should be used to assess the relative levels of risk faced by groups based on divisions other than ethnicity, such as those with compromised immune systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantitative microbial risk assessment models for estimating the annual risk of enteric virus infection associated with consuming raw vegetables that have been overhead irrigated with nondisinfected secondary treated reclaimed water were constructed. We ran models for several different scenarios of crop type, viral concentration in effluent, and time since last irrigation event. The mean annual risk of infection was always less for cucumber than for broccoli, cabbage, or lettuce. Across the various crops, effluent qualities, and viral decay rates considered, the annual risk of infection ranged from 10–3 to 10–1 when reclaimed-water irrigation ceased 1 day before harvest and from 10–9 to 10–3 when it ceased 2 weeks before harvest. Two previously published decay coefficients were used to describe the die-off of viruses in the environment. For all combinations of crop type and effluent quality, application of the more aggressive decay coefficient led to annual risks of infection that satisfied the commonly propounded benchmark of ≤10–4, i.e., one infection or less per 10,000 people per year, providing that 14 days had elapsed since irrigation with reclaimed water. Conversely, this benchmark was not attained for any combination of crop and water quality when this withholding period was 1 day. The lower decay rate conferred markedly less protection, with broccoli and cucumber being the only crops satisfying the 10–4 standard for all water qualities after a 14-day withholding period. Sensitivity analyses on the models revealed that in nearly all cases, variation in the amount of produce consumed had the most significant effect on the total uncertainty surrounding the estimate of annual infection risk. The models presented cover what would generally be considered to be worst-case scenarios: overhead irrigation and consumption of vegetables raw. Practices such as subsurface, furrow, or drip irrigation and postharvest washing/disinfection and food preparation could substantially lower risks and need to be considered in future models, particularly for developed nations where these extra risk reduction measures are more common.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gaylene Perry, author of Midnight Water (2004), dealt in this work with the loss of her father and her brother eleven years ago in an irrigation channel in country Victoria (Australia). She set her story in one day- the day of the drownings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The global trend toward more intensive forms of agriculture is changing the nature of matrix habitat in agricultural areas. Removal of components of matrix habitat can affect native biota at the paddock and the landscape scale, particularly where intensification occurs over large areas. We identify the loss of paddock trees due to the proliferation of centre pivot irrigation in dryland farming areas as a potentially serious threat to the remnant biota of these areas. We used a region of south-eastern Australia as a case study to quantify land use change from grazing and dryland cropping to centre pivot irrigation over a 23-year period. We also estimated rates of paddock tree loss in 5 representative landscapes within the region over the same period. The total area affected by centre pivots increased from 0 ha in 1980 to nearly 9000 ha by 2005. Pivots were more likely to be established in areas which had originally been plains savannah and woodlands containing buloke (Allocasuarina luehmannii), a food source for an endangered bird. On average, 42% of paddock buloke trees present in 1982 were lost by 2005. In the two landscapes containing several centre pivots, the loss was 54% and 70%. This accelerated loss of important components of matrix habitat is likely to result in species declines and local extinctions. We recommend that measures to alleviate the likely negative impacts of matrix habitat loss on native biota be considered as part of regional planning strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In water repellent soil, Cr, Pb and Cu showed higher adsorption intensities than Zn, Cd and Ni did. Soil water repellency is much more widespread than formerly thought. In order to promote fertility and productivity, the irrigation of recycled water onto water repellent soil may be an applied technology to be used in some areas of Southern Australia. Therefore, heavy metals in recycled water potentially enter into the soil. The competitive sorption and retention capacity of heavy metals in soil are important to be determined, especially considering the special geochemical origin of water repellent soil that was caused by waxes on or between the soil particles. Batch equilibrium sorption experiments on Cd, Cr, Cu, Ni, Pb and Zn in their typical proportion in recycled water were conducted in water repellent soil. The sorption intensity, sorption isotherm in the experiments together showed that Cr, Pb and Cu have higher sorption intensity than those of Zn, Ni and Cd in the competitive system. The risk assessment for the application of recycled water onto water repellent soil is definitely necessary, especially for the metal cations with relatively weak sorption.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A pulse of chromated copper arsenate (CCA, a timber preservative) was applied in irrigation water to an undisturbed field soil in a laboratory column. Concentrations of various elements in the leachate from the column were measured during the experiment. Also, the remnants within the soil were measured at the end of the experiment. The geochemical modelling package, PHREEQC-2, was used to simulate the experimental data. Processes included in the CCA transport modelling were advection, dispersion, non-specific adsorption (cation exchange) and specific adsorption by clay minerals and organic matter, as well as other possible chemical reactions such as precipitation/dissolution. The modelling effort highlighted the possible complexities in CCA transport and reaction experiments. For example, the uneven dosing of CCA as well as incomplete knowledge of the soil properties resulted in simulations that gave only partial, although reasonable, agreement with the experimental data. Both the experimental data and simulations show that As and Cu are strongly adsorbed and therefore, will mostly remain at the top of the soil profile, with a small proportion appearing in leachate. On the other hand, Cr is more mobile and thus it is present in the soil column leachate. Further simulations show that both the quantity of CCA added to the soil and the pH of the irrigation water will influence CCA transport. Simulations suggest that application of larger doses of CCA to the soil will result in higher leachate concentrations, especially for Cu and As. Irrigation water with a lower pH will dramatically increase leaching of Cu. These results indicate that acidic rainfall or significant accidental spillage of CCA will increase the risk of groundwater pollution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anthropogenic land use changes drive a range of infectious disease outbreaks and emergence events and modify the transmission of endemic infections. These drivers include agricultural encroachment, deforestation, road construction, dam building, irrigation, wetland modification, mining, the concentration or expansion of urban environments, coastal zone degradation, and other activities. These changes in turn cause a cascade of factors that exacerbate infectious disease emergence, such as forest fragmentation, disease introduction, pollution, poverty, and human migration. The Working Group on Land Use Change and Disease Emergence grew out of a special colloquium that convened international experts in infectious diseases, ecology, and environmental health to assess the current state of knowledge and to develop recommendations for addressing these environmental health challenges. The group established a systems model approach and priority lists of infectious diseases affected by ecologic degradation. Policy-relevant levels of the model include specific health risk factors, landscape or habitat change, and institutional (economic and behavioral) levels. The group recommended creating Centers of Excellence in Ecology and Health Research and Training, based at regional universities and/or research institutes with close links to the surrounding communities. The centers' objectives would be 3-fold: a) to provide information to local communities about the links between environmental change and public health ; b) to facilitate fully interdisciplinary research from a variety of natural, social, and health sciences and train professionals who can conduct interdisciplinary research ; and c) to engage in science-based communication and assessment for policy making toward sustainable health and ecosystems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although soils are generally considered to wet readily, some are actually water repellent at the surface and in the rhizosphere. This phenomenon occurs at low to moderate moisture contents and has been reported from soils under a range of vegetation types and from many regions around the globe. Water repellency in soils can have serious environmental implications including reduced seed germination and plant growth as well as irrigation efficiency, accelerated soil erosion, and enhanced leaching of agrochemicals through preferential flow. it has been proposed that water repellency is caused by the accumulation of hydrophobic organic compounds released as root exudates, microbial byproducts or from decomposing organic matter, which are deposited on mineral or aggregate surfaces, or are present as interstitial matter, Few studies to date have attempted to isolate and characterize these compounds and their structure is therefore only poorly understood, These studies have generally focussed on only a single soil or a small range of samples, have not included non-repellent soils as a control and have not always been able to demonstrate that the substances isolated are indeed responsible for repellency formation.

This study reports on the first part (extraction procedures) of a research programme addressing these gaps in current knowledge by investigating a wide range of severely repellent and wettable ‘control’ samples from different countries, and by including assessments of extraction efficiency and ability of extracts to cause repellency. Analytical methods include DRIFT (Diffuse Reflectance Infrared Fourier Transform Spectroscopy) of soils and IR (Infrared) analysis of extracts.

Key findings are that (i) soil sample heating after extraction is valuable in assessing the effectiveness of the extraction procedure, (ii) Soxhlet extraction using isopropanol/ ammonia (70/30 v/v) was the most effective method in extracting hydrophobic compounds, while leaving the ability of extracted compounds to induce water repellency virtually unaffected, (iii) wettable control soils also contain hydrophobic substances capable of inducing water repellency, (iv) the amount of organic compounds extracted was poorly related to sample repellency, indicating that compounds responsible for repellency may only represent a small fraction of the extract, (v) differences in extraction efficiency between different samples indicate that the compounds responsible may differ generically and/or in terms of their bonding to minerals, and (vi) the combination of repellency assessments with DRIFT on soils and JR on extracts used with internal standards has considerable potential to allow quantification of CH bearing organic matter in the soil, the efficiency of extraction processes for its removal, and its significance in causing water repellency in soils.