34 resultados para ilmenite oxide materials


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fast detection and removal of organic dyes from contaminated water has become an urgent environmental issue due to their high toxicity, chemical stability, and low biodegradability. In this paper, we have developed graphene oxide decorated Fe3O4@SiO2 (Fe3O4@SiO2-GO) as a novel adsorbent aiming at the rapid adsorption and trace analysis of organic dyes followed by surface enhanced Raman scattering (SERS). The structure and morphology of the nanocomposites were characterized by transmission electron microscopy (TEM), Fourier infrared spectrometry (FT-IR), X-ray diffraction (XRD), and vibrating sample magnetometer (VSM). The obtained nanocomposites were used to adsorb methylene blue (MB) in aqueous solution based on π-π stacking interaction and electrostatic attraction between MB and GO, and the adsorption behaviors of MB were investigated. Moreover, the obtained nanocomposites with adsorbed dyes were separated from the solution and loaded with silver nanoparticles for SERS detection. These nanocomposites showed superior SERS sensitivity and the lowest detectable concentration was 1.0 × 10-7 M.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Raman spectroscopy is among the primary techniques for the characterisation of graphene materials, as it provides insights into the quality of measured graphenes including their structure and conductivity as well as the presence of dopants. However, our ability to draw conclusions based on such spectra is limited by a lack of understanding regarding the origins of the peaks. Consequently, traditional characterisation techniques, which estimate the quality of the graphene material using the intensity ratio between the D and the G peaks, are unreliable for both GO and rGO. Herein we reanalyse the Raman spectra of graphenes and show that traditional methods rely upon an apparent G peak which is in fact a superposition of the G and D' peaks. We use this understanding to develop a new Raman characterisation method for graphenes that considers the D' peak by using its overtone the 2D'. We demonstrate the superiority and consistency of this method for calculating the oxygen content of graphenes, and use the relationship between the D' peak and graphene quality to define three regimes. This has important implications for purification techniques because, once GO is reduced beyond a critical threshold, further reduction offers limited gain in conductivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

 The application of graphene based materials in the area of stretchable electronics has driven enormous attention, especially in terms of the design of stretchable structures. This thesis has finely tuned the synthesis process of reduced graphene oxide (rGO), focused on the introduction of a thermo-mechanical shrinking process to fabricate wrinkled rGO structure as stretchable conductors and finally presented another potential application of wrinkled rGO structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIM: To unravel the multimodal nanotheranostic ability of Fe3O4-saturated bovine lactoferrin nanocapsules (FebLf NCs) in claudin-low, triple-negative breast cancer model. MATERIALS & METHODS: Xenograft study was performed to examine biocompatibility, antitumor efficacy and multimodal nanotheranostic action in combination with near-infrared live mice imaging. RESULTS: FebLf NCs exhibited a size range of 80 nm ± 5 nm with observed superparamagnetism. FebLf NCs successfully internalized into breast cancer cells through receptor-mediated endocytosis and induced apoptosis through the downregulation of inhibitor of apoptosis survivin and livin proteins. Investigations revealed a remarkable biocompatibility, anticancer efficacy of the FebLf NCs. Near-infrared imaging observations confirmed selective localization of multimodal FebLf NCs at the tumor site and lead to time-dependent reduction of tumor growth. CONCLUSION: FebLf NCs can be safe, biocompatible nanotheranostic approach for real-time imaging and monitoring the effect of drugs in real time and have potentials in future clinical trials.