43 resultados para hydrophilic


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work demonstrates that the interfacial properties in a natural fiber reinforced polylactide biocomposite can be tailored through surface adsorption of amphiphilic and biodegradable poly (ethylene glycol)-b-poly-(L-lactide) (PEG-PLLA) block copolymers. The deposition from solvent solution of PEG-PLLA copolymers onto the fibrous substrate induced distinct mechanisms of molecular organization at the cellulosic interface, which are correlated to the hydrophobic/hydrophilic ratios and the type of solvent used. The findings of the study evidenced that the performance of the corresponding biocomposites with polylactide were effectively enhanced by using these copolymers as interfacial coupling agents. During the fabrication stage, diffusion of the polylactide in the melt induced a change in the environment surrounding block copolymers which became hydrophobic. It is proposed that molecular reorganization of the block copolymers at the interface occurred, which favored the interactions with both the hydrophilic fibers and hydrophobic polylactide matrix. The strong interactions such as intra- and intermolecular hydrogen bonds formed across the fiber−matrix interface can be accounted for the enhancement in properties displayed by the biocomposites. Although the results reported here are confined, this concept is unique as it shows that by tuning the amphiphilicity and the type of building blocks, it is possible to control the surface properties of the substrate by self-assembly and disassembly of the amphiphiles for functional materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we demonstrate that fabrics having a wettability gradient from superhydrophobic to hydrophilic through the thickness direction show a novel directional water transfer effect: water can transfer from the superhydrophobic to the hydrophilic side, but not in the opposite direction unless an external force is applied. A sol–gel technology was used to prepare a nano-structured superhydrophobic coating on fabrics, and the coated fabrics showed water contact-angle as high as 165 degrees. When the coated fabric was subjected to a photochemistry treatment from one fabric side, the irradiated surface turned hydrophilic permanently, while the back side still maintained the superhydrophobicity. The treated fabric can transfer water droplet rapidly from hydrophobic to hydrophilic side, and the pressure allowing water breakthrough the fabric are different considerably between the two fabric sides. The directional water transfer effect is affected by the wettability gradient. Such a directional water transfer coating may be useful to develop new functional fabrics for defence applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Twomultidimensional HPLC separations of an Australian red wine are presented, >70% of the available separation space was used. A porous graphitic carbon (PGC) stationary phase was used as the first dimension in both separations with both RP core–shell and hydrophilic interaction chromatography fully porous columns used separately in the second dimension. To overcome peak analysis problems caused by signal noise and low detection limits, the data were pre-processed with penalised least-squares smoothing. The PGC × RP combination separated 85 peaks with a spreading angle of 71 and the PGC × hydrophilic interaction chromatography separated 207 peaks with a spreading angle of 80. Both 2D-HPLC steps were completed in 76 min using a comprehensive stop-and-go approach. A smoothing step was added to peak-picking processes and was able to greatly reduce the number of false peaks present due to noise in the chromatograms. The required thresholds were not able to ignore the noise because of the small magnitude of the peaks; 1874 peaks were located in the non-smoothed PGC × RP separation that reduced to 227 peaks after smoothing was included.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To achieve the greatest peak capacity in two-dimensional high performance liquid chromatography (2D-HPLC) a gradient should be operated in both separation dimensions. However, it is known that when an injection solvent that is stronger than the initial mobile phase composition is deleterious to peak performance, thus causing problems when cutting a portion from one gradient into another. This was overcome when coupling hydrophilic interaction with reversed phase chromatography by introducing a counter gradient that changed the solvent strength of the second dimension injection. It was found that an injection solvent composition of 20% acetonitrile in water gave acceptable results in one-dimensional simulations with an initial composition of 5% acetonitrile. When this was transferred to a 2D-HPLC separation of standards it was found that a marked improvement in peak shape was gained for the moderately retained analytes (phenol and dimethyl phthalate), some improvement for the weakly retained caffeine and very little change for the strongly retained n-propylbenzene and anthracene which already displayed good chromatographic profiles. This effect was transferred when applied to a 2D-HPLC separation of a coffee extract where the indecipherable retention profile was transformed to a successful application multidimensional chromatography with peaks occupying 71% of the separation space according to the geometric approach to factor analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to overcome interfacial incompatibility issues in natural fibre reinforced polymer bio-composites, surface modifications of the natural fibres using complex and environmentally unfriendly chemical methods is necessary. In this paper, we demonstrate that the interfacial properties of cellulose-based bio-composites can be tailored through surface adsorption of polyethylene glycol (PEG) based amphiphilic block copolymers using a greener alternative methodology. Mixtures of water or water/acetone were used to form amphiphilic emulsions or micro-crystal suspensions of PEG based amphiphilic block copolymers, and their deposition from solution onto the cellulosic substrate was carried out by simple dip-coating. The findings of this study evidence that, by tuning the amphiphilicity and the type of building blocks attached to the PEG unit, the flexural and dynamic thermo-mechanical properties of cellulose-based bio-composites comprised of either polylactide (PLA) or high density polyethylene (HDPE) as a matrix, can be remarkably enhanced. The trends, largely driven by interfacial effects, can be ascribed to the combined action of the hydrophilic and hydrophobic components of these amphiphiles. The nature of the interactions formed across the fibre-matrix interface is discussed. The collective outcome from this study provides a technological template to significantly improve the performance of cellulose-based bio-composite materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of varying the position of the azobenzene group within two comparable photoresponsive amphiphiles on their capability to form lyotropic liquid crystals (LLCs) was investigated in detail in this study. Two photoresponsive amphiphiles having comparable structures were designed and synthesized consisting of hydrophilic oligooxyethylene units, a hydrophobic alkyl chain and a light-sensitive azobenzene moiety. When the azobenzene group was located in the middle of the hydrophobic alkyl chain, multiple LLC phases were observed at various water contents in the azo-surfactant–water binary system. In contrast, when the azobenzene group was directly attached to the hydrophilic domain, the azo-surfactant–water binary system exhibited only lamellar phases. The temperature dependence of these self-organised nanostructures was also investigated by the combination of small angle X-ray scattering (SAXS), differential scanning calorimetry (DSC), and rheology. Under alternating UV and visible light irradiation, reversible trans–cis photoisomerization of the azobenzene group occurred efficiently in dilute solution for both azo-surfactants. However, only photoisomerization of the surfactant possessing the azobenzene group localized in the middle of the alkyl chain induced significant changes in the self-assembled structure and its bulk properties. This study demonstrates that self-assembly and photoresponsive behaviour of photosensitive amphiphiles is extremely sensitive to the position of the photoactive moiety within the surfactant molecular architecture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mg alloys are attractive candidate materials for biodegradable stents. However, there are few commercially available Mg-based stents in clinical use because Mg alloys generally undergo rapid localized corrosion in the body. In this study, we report a new surface coating for Mg alloy AZ31 based on a low-toxicity ionic liquid (IL), tributyl(methyl)phosphonium diphenyl phosphate (P1,4,4,4 dpp), to control its corrosion rate. Emphasis is placed on the effect of treatment temperature. We showed that enhancing the treatment temperature provided remarkable improvements in the performances of both corrosion resistance and biocompatibility. Increasing treatment temperature resulted in a thicker (although still nanometer scale) and more homogeneous IL film on the surface. Scanning electron microscopy and optical profilometry observations showed that there were many large, deep pits formed on the surface of bare AZ31 after 2 h of immersion in simulated body fluid (SBF). The IL coating (particularly when formed at 100 °C for 1 h) significantly suppressed the formation of these pits on the surface, making corrosion occur more uniformly. The P1,4,4,4 dpp IL film formed at 100 °C was more hydrophilic than the bare AZ31 surface, which was believed to be beneficial for avoiding the deposition of the proteins and cells on the surface and therefore improving the biocompatibility of AZ31 in blood. The interaction mechanism between this IL and AZ31 was also investigated using ATR-FTIR, which showed that both anion and cation of this IL were present in the film, and there was a chemical interaction between dpp(-) anion and the surface of AZ31 during the film formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The drying of colloidal droplet suspensions is important in many realms of practical application and has sustained the interest of researchers over two decades. The arrangements of polystyrene and silica beads, both of diameter 1 μm, 10% by volume of solid deposited on normal glass (hydrophilic), and silicone (hydrophobic) surfaces evaporated from a suspension volume of 3 μL, were investigated. Doughnut shape depositions were found, imputing the influence of strong central circulation flows that resulted in three general regions. In the central region which had strong particle build-up, the top most layers of particle arrangement was confirmed to be disordered using power spectrum and radial distribution function analysis. On closer examination, this appeared more like frustrated attempts to crystallize into larger grains rather than beads arranging in a disordered fashion throughout the piling process. With an adapted micro-bulldozing operation to progressively remove layers of particles from the heap, we found that the later efforts to crystallize through lateral capillary inter-particle forces were liable to be undone once the particles contacted the disorganized particles underneath, which were formed out of the jamming of fast particles arriving at the surface. © 2014 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Regenerated Bombyx mori (B. mori) silk fibroin is a type of widely used biomaterial. The β-sheet structure of it after methanol treatment provides water-insolubility and mechanical stability while on the other side leads to a hydrophobic surface which is less preferred by biological systems. In this work we prepare a novel type of nanoconfined silk fibroin film with a thickness below 100 nm. The film has a flat while hydrophobic surface because of its β-sheet structure due to the z-direction confinement during formation. Different types of lipid monolayers, DOPC, DPPC and MO, are assembled on the silk film surface. The lipid coating, especially the DPPC membrane, provides a much smoother and more hydrophilic surface due to the gel phase tails of the lipids, in comparison with the DOPC and MO ones which are in a liquid phase and have a much stronger interfacial association between silk film surface and lipid tails. Such a lipid coating preserves the biocompatibility and cellular affinity of the silk film which promises potential applications as surface coatings for materials for biological use.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of structurally amphiphilic biscationic norbornanes have been synthesised as rigidified, low molecular weight peptidomimetics of cationic antimicrobial peptides. A variety of charged hydrophilic functionalities were attached to the norbornane scaffold including aminium, guanidinium, imidazolium and pyridinium moieties. Additionally, a range of hydrophobic groups of differing sizes were incorporated through an acetal linkage. The compounds were evaluated for antibacterial activity against both Gram-negative and Gram-positive bacteria. Activity was observed across the series; the most potent of which exhibited an MIC's ≤ 1 μg mL(-1) against Streptococcus pneumoniae, Enterococcus faecalis and several strains of Staphylococcus aureus, including multi-resistant methicillin resistant (mMRSA), glycopeptide-intermediate (GISA) and vancomycin-intermediate (VISA) S. aureus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A sensitive electrochemical acetylcholinesterase (AChE) biosensor based on a reduced graphene oxide (rGO) and silver nanocluster (AgNC) modified glassy carbon electrode (GCE) was developed. rGO and AgNC nanomaterials with excellent conductivity, catalytic activity and biocompatibility offered an extremely hydrophilic surface, which facilitated the immobilization of AChE to fabricate the organophosphorus pesticide biosensor. Carboxylic chitosan (CChit) was used as a cross-linker to immobilize AChE on a rGO and AgNC modified GCE. The AChE biosensor showed favorable affinity to acetylthiocholine chloride (ATCl) and could catalyze the hydrolysis of ATCl. Based on the inhibition effect of organophosphorus pesticides on the AChE activity, using phoxim as a model compound, the inhibition effect of phoxim was proportional to its concentration ranging from 0.2 to 250 nM with a detection limit of 81 pM estimated at a signal-to-noise ratio of 3. The developed biosensor exhibited good sensitivity, stability and reproducibility, thus providing a promising tool for analysis of enzyme inhibitors and direct analysis of practical samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chitosan is a natural and non-toxic polymer which can be used as a multifunctional, e.g. antimicrobial or anti-wrinkle, agent on cotton fabrics. However, due to the lack of strong bonding forces between two polysaccharides, chitosan coating on cotton has poor durability. To provide efficient and irreversible chitosan adsorption on cotton substrate, it is required to build appropriate binding sites and to activate the substrate material properly. For this purpose, plasma treatment can be a promising method as it can activate the surface of the cotton fabric and improve the adsorption of chemicals in a completely harmless procedure. In this study, we investigated the effect of atmospheric pressure plasma treatment on adsorption of chitosan onto the cotton fabric. The purpose of the study was to investigate to which extent adsorption of chitosan on cotton can be improved by helium plasma treatment. Fibre surface and adsorption of chitosan were characterized by X-ray Photoelectron Spectroscopy (XPS) and Fourier Transform Infrared (FTIR) spectroscopy. Changes in hydrophobicity of fabric`s surface and fibre morphology were evaluated using contact angle method and scanning electron microscopy (SEM), respectively. The results from XPS showed an increase in the C=O bonds on cotton fabrics oxydised by helium plasma treatmnets, confirming the formation of aldehyde groups in cellulose. The characteristic absorbance band of chitosan, amide II (N-H bending vibration) showed an enlargement for all fabrics treated with helium and chitosan, as assesed by FTIR. The absorbance peaks of CH2 stretching vibrations, which confirm chitosan existence, were stronger for all treated fabrics compared to the untreated control. While the plasma only treated fabric surface was very hydrophilic, the surface became hydrophobic after chitosan coating.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Highly polar metabolites, such as sugars and most amino acids are not retained by conventional RP LC columns. Without sufficient retention low concentration compounds are not detected due ion suppression and structural isomers are not resolved. In contrast, hydrophilic interaction chromatography (HILIC) and aqueous normal phase chromatography (ANP) retain compounds based on their hydrophilicity and therefore provides a means of separating highly polar compounds. Here, an ANP method based on the diamond hydride stationary phase is presented for profiling biological small molecules by LC. A rapid separation system based upon a fast gradient that delivers reproducible chromatography is presented. Approximately 1000 compounds were reproducibly detected in human urine samples and clear differences between these samples were identified. This chromatography was also applied to xylem fluid from soyabean (Glycine max) plants to which 400 compounds were detected. This method greatly increases the metabolite coverage over RP-only metabolite profiling in biological samples. We show that both forms of chromatography are necessary for untargeted comprehensive metabolite profiling and that the diamond hydride stationary phase provides a good option for polar metabolite analysis.