35 resultados para hunting


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Both habitat patchiness and behaviorally-mediated indirect effects (BMIEs; predator- induced changes in prey behavior that affect the prey's resources) are important in many food webs, but the relationships between these 2 factors have yet to be investigated. To explore effects of habitat patchiness and variation in perceived risk of predation on food-web dynamics, we conducted a factorial experiment in a model aquatic food chain of predator-prey-resource using 2 contrasting predators (adult blue crab Callinectes sapidus and toad fish Opsanus tau), juvenile blue crab as prey, and mussel Geukensia demissa as resource. Both predator presence and habitat patchiness influenced the prey's preference for consuming resources at patch edges instead of interiors. The preference of prey for consuming resources at habitat edges was 4 times stronger in continuous oyster reef habitat than in smaller habitat patches. This suggests that interior resources in continuous habitat experience a refuge from consumption, but this refuge is largely lost in patchy habitat. The mere presence of predators reduced the prey's preference for consuming resources at habitat edges. This BMIE was significant for the ambush predator (toadfish) and the treatment containing both predators, but not for the actively hunting predator (adult blue crab). We conclude that habitat patchiness and predator presence can jointly affect resource distribution by inducing shifts in prey foraging behavior, revealing a need to incorporate BMIEs into habitat fragmentation studies. This conclusion has broad and growing relevance as anthropogenic factors increasingly modify predator abundances and fragment coastal habitats. © Inter-Research 2012.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Billfishes are considered among the fastest swimmers in the oceans. Despite early estimates of extremely high speeds, more recent work showed that these predators (e.g., blue marlin) spend most of their time swimming slowly, rarely exceeding 2 m s(-1). Predator-prey interactions provide a context within which one may expect maximal speeds both by predators and prey. Beyond speed, however, an important component determining the outcome of predator-prey encounters is unsteady swimming (i.e., turning and accelerating). Although large predators are faster than their small prey, the latter show higher performance in unsteady swimming. To contrast the evading behaviors of their highly maneuverable prey, sailfish and other large aquatic predators possess morphological adaptations, such as elongated bills, which can be moved more rapidly than the whole body itself, facilitating capture of the prey. Therefore, it is an open question whether such supposedly very fast swimmers do use high-speed bursts when feeding on evasive prey, in addition to using their bill for slashing prey. Here, we measured the swimming behavior of sailfish by using high-frequency accelerometry and high-speed video observations during predator-prey interactions. These measurements allowed analyses of tail beat frequencies to estimate swimming speeds. Our results suggest that sailfish burst at speeds of about 7 m s(-1) and do not exceed swimming speeds of 10 m s(-1) during predator-prey interactions. These speeds are much lower than previous estimates. In addition, the oscillations of the bill during swimming with, and without, extension of the dorsal fin (i.e., the sail) were measured. We suggest that extension of the dorsal fin may allow sailfish to improve the control of the bill and minimize its yaw, hence preventing disturbance of the prey. Therefore, sailfish, like other large predators, may rely mainly on accuracy of movement and the use of the extensions of their bodies, rather than resorting to top speeds when hunting evasive prey.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The red fox (Vulpes vulpes) is common and widely distributed within the UK. It is a carrier or potential carrier of numerous zoonotic diseases. Despite this, there are no published reports on the population genetics of foxes in Britain. In this study, we aim to provide an insight into recent historical movement of foxes within Britain, as well as a current assessment of the genetic diversity and gene flow within British populations. We used 14 microsatellite markers to analyse 501 red fox samples originating from England, southern Scotland and northern France. High genetic diversity was evident within the sample set as a whole and limited population genetic structure was present in British samples analysed. Notably, STRUCTURE analysis found support of four population clusters, one of which grouped two southern England sampling areas with the nearby French samples from Calais, indicating recent (post-formation of the Channel) mixing of British and French populations. This may coincide with reports of large-scale translocations of foxes into Britain during the nineteenth century for sport hunting. Other STRUCTURE populations may be related to geographic features or to cultural practices such as fox hunting. In addition, the two British urban populations analysed showed some degree of differentiation from their local rural counterparts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Individual specialization is widespread among wild populations. While its fitness consequences are central in predicting the ecological and evolutionary trajectories of populations, they remain poorly understood. Long-term individual foraging specializations occur in male Antarctic (Arctocephalus gazella) and Australian (A. pusillus doriferus) fur seals. Strong selective pressure is expected in these highly dimorphic and polygynous species, raising the question of the fitness payoffs associated with different foraging strategies. We investigated the relationship between individual isotopic niche (a proxy of foraging specialization), body size and condition, and an index of reproductive success (harem size) in territorial males. Individuals varied greatly in their skin and fur isotopic values reflecting a range of foraging strategies within the two populations. However, in both species, isotopic niche was not correlated to body size, condition or mating success (R (2)/ρ < 0.06). Furthermore, no foraging niche was predominant in either species, which would have indicated a substantial long-term fitness benefit of a particular strategy via a higher survival rate. These results suggest that the fitness consequences of a foraging strategy depend not only on the quality of prey and feeding habitat but also on an individual's hunting efficiency and skills.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large wild herbivores are crucial to ecosystems and human societies. We highlight the 74 largest terrestrial herbivore species on Earth (body mass≥100 kg), the threats they face, their important and often overlooked ecosystem effects, and the conservation efforts needed to save them and their predators from extinction. Large herbivores aregenerally facing dramatic population declines and range contractions, such that ~60% are threatened with extinction. Nearly all threatened species are in developing countries, where major threats include hunting, land-use change, and resource depression by livestock. Loss of large herbivores can have cascading effects on other species including large carnivores, scavengers, mesoherbivores, small mammals, and ecological processes involving vegetation, hydrology, nutrient cycling, and fire regimes. The rate of large herbivore decline suggests that ever-largerswaths of the world will soon lack many of the vital ecological services these animals provide, resulting in enormous ecological and social costs.