152 resultados para hot pressing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is commonly assumed that solar hot water systems save energy and reduce greenhouse gas emissions. Very rarely has the life-cycle energy requirements of solar hot water systems been analysed, including their embodied energy. The extent to which solar hot water systems save energy compared to conventional systems in Melbourne, Australia, is shown through a comparative net energy analysis. The solar systems provided a net energy saving compared to the conventional systems after 0.5 to 2 years, for electricity and gas systems respectively.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel single-pass hot strip rolling process has been developed in which ultra-fine (<2 μm) ferrite grains form at the surface of hot rolled strip in two low carbon steels with average austenite grain sizes above 200 μm. Two experiments were performed on strip that had been re-heated to 1250°C for 300 s and air-cooled to the rolling temperatures. The first involved hot rolling a sample of 0.09 wt.%C–1.68Mn–0.22Si–0.27Mo steel (steel A) at 800°C, which was just above the Ar3 of this sample, while the second involved hot rolling a sample of 0.11C–1.68Mn–0.22Si steel (steel B) at 675°C, which is just below the Ar3 temperature of the sample. After air cooling, the surface regions of strip of both steel A and B consisted of ultra-fine ferrite grains which had formed within the large austenite grains, while the central regions consisted of a bainitic microstructure. In the case of steel B, a network of allotriomorphic ferrite delineated the prior-austenite grain boundaries throughout the strip cross-section. Based on results from optical microscopy and scanning/transmission electron microscopy, as well as bulk X-ray texture analysis and microtextural analysis using Electron Back-Scattered Diffraction (EBSD), it is shown that the ultra-fine ferrite most likely forms by a process of rapid intragranular nucleation during, or immediately after, deformation. This process of inducing intragranular nucleation of ferrite by deformation is referred to as strain-induced transformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mathematical model has been developed which describes the hot deformation and recrystallization behavior of austenite using a single internal variable: dislocation density. The dislocation density is incorporated into equations describing the rate of recovery and recrystallization. In each case no distinction is made between static and dynamic events, and the model is able to simulate multideformation processes. The model is statistically based and tracks individual populations of the dislocation density during the work-hardening and softening phases. After tuning using available data the model gave an accurate prediction of the stress–strain behavior and the static recrystallization kinetics for C–Mn steels. The model correctly predicted the sensitivity of the post deformation recrystallization behavior to process variables such as strain, strain rate and temperature, even though data for this were not explicitly incorporated in the tuning data set. In particular, the post dynamic recrystallization (generally termed metadynamic recrystallization) was shown to be largely independent of strain and temperature, but a strong function of strain rate, as observed in published experimental work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the austenite grain size (AGS) for hot bar rolling of AISI4135 steel was predicted based on two different AGS evolution models available in the literature. In order to predict the AGS more accurately, both models were integrated with a three-dimensional non-isothermal finite element program by implementing a modified additivity rule. The predicted results based on two models for the square-diamond (S-D) and round-oval (R-O) pass bar rolling processes were compared with the experimental data available in the literature. Then, numerical predictions depending on various process parameters such as interpass time, temperature, and roll speed were made to compare both models and investigate the effect of these parameters on the AGS distributions. Such numerical results were found to be beneficial to understand the effect of the microstructure evolution model on the rolling processes better and control the processes more accurately.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The contribution of nano-scale particles observed using Atom Probe Tomography in an increase of yield strength of conventional and advanced HSLA steels was studied. The advanced HSLA steel showed higher yield strength than conventional HSLA steel. There were two types of carbides, which primarily contribute to an increase in yield strength of conventional HSLA steel: (i) coarse TiC with average size of 25±5nm and (ii) fine TiC with average radius of 3±1.2nm. The presence of two types of carbides was found in the microstructure of advanced HSLA steel: (i)
nano-scale Ti0.98Mo0.02C0.6 carbides with average radius of 2.2±0.5nm, and (ii) C19Cr7Mo24 particles with an average radius of 1.5±0.3nm. The contribution of precipitation hardening in the yield strength of advanced HSLA steel due to the nano-scale particles was 174MPa, while this value in the conventional HSLA steel was 128MPa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work describes a hybrid modeling approach developed for predicting the flow behavior, recrystallization characteristics, and crystallographic texture evolution in a Fe-30 wt pct Ni austenitic model alloy subjected to hot plane strain compression. A series of compression tests were performed at temperatures between 850 °C and 1050 °C and strain rates between 0.1 and 10 s−1. The evolution of grain structure, crystallographic texture, and dislocation substructure was characterized in detail for a deformation temperature of 950 °C and strain rates of 0.1 and 10 s−1, using electron backscatter diffraction and transmission electron microscopy. The hybrid modeling method utilizes a combination of empirical, physically-based, and neuro-fuzzy models. The flow stress is described as a function of the applied variables of strain rate and temperature using an empirical model. The recrystallization behavior is predicted from the measured microstructural state variables of internal dislocation density, subgrain size, and misorientation between subgrains using a physically-based model. The texture evolution is modeled using artificial neural networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructure evolution during hot deformation of a 23Cr-5Ni-3Mo duplex stainless steel was investigated in torsion. The presence of a soft δ ferrite phase in the vicinity of austenite caused strain partitioning, with accommodation of more strain in the δ ferrite. Furthermore, owing to the limited number of austenite/austenite grain boundaries, the kinetics of dynamic recrystallisation (DRX) in austenite was very slow. The first DRX grains in the austenite phase formed at a strain beyond the peak and proceeded to <15% of the microstructure at the rupture strain of the sample. On the other hand, the microstructure evolution in δ ferrite started by formation of low angle grain boundaries at low strains and the density of these boundaries increased with increasing strain. There was clear evidence of continuous dynamic recrystallisation in this phase at strains beyond the peak. However, in the δ ferrite phase at high strains, most grains consisted of δ/δ and δ/γ boundaries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrafine grain sizes were produced using hot torsion testing of a 0.11C-1.68Mn-0.20Si (wt-%) steel, with ultrafine ferrite (<1 µm) nucleating intragranularly during testing by dynamic strain induced transformation. A systematic study was made of the effect of isothermal deformation temperature, strain level, strain rate, and accelerated cooling during deformation on the formation of ultrafine ferrite by this process. Decreasing the isothermal testing temperature below the Ae3 temperature led to a greater driving force for ferrite nucleation and thus more extensive nucleation during testing; the formation of Widmanstätten ferrite prior to, or early during, deformation imposed a lower temperature limit. Increasing the strain above that where ferrite first began 0.8 at 675C and a strain rate of 3 s¯1 increased the intragranular nucleation of ferrite. Strain rate appeared to have little effect on the amount of ferrite formed. However, slower strain rates led to extensive polygonisation of the ferrite formed because more time was available for ferrite recovery. Accelerated cooling during deformation followed by air cooling to room temperature led to a uniform microstructure consisting of very fine ferrite grains and fine spherical carbides located in the grain boundaries regions. Air cooling after isothermal testing led to carbide bands and a larger ferrite grain size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A feasibility study for handling the partial recrystallisation in multi-pass hot deformation where the heterogeneity of microstructure of deformed austenite is inherently accompanied is presented. The proposed model is based on modification of the conventional model in which the microstructure of deformed austenite at each pass is simply taken as being homogeneous during the multi-pass deformation. The usefulness of the modified model has been demonstrated by applying it to a four-pass oval–round (or round–oval) rod rolling sequence. The recrystallised fraction, austenite grain size (AGS) and mean flow stress at each pass computed from the modified model has been compared with those from the conventional model. The result showed that the recrystallisation behaviour and evolution of AGS at a given pass were dependent on the modelling method of the partial recrystallisation in the multi-pass rolling for the case studied. As the rolling speed increased, the difference between the mean flow stresses calculated by the conventional model and the proposed model was gradually larger in accordance with the contribution of partial recrystallisation.