107 resultados para high-strength and high-modulus fibres


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The multi-phase, metastable, and multi-scale (M3) constitution of a novel transformation-induced plasticity (TRIP) steel (Fe-0.17C-6.5Mn-1.1Al-0.22Mo-0.05Nb, wt pct) was designed through thermodynamic calculations combined with experimental analysis. In this study, Mo and Nb microalloying was used to control the fraction of retained austenite and its mechanical stability during tensile deformation and to improve the yield strength. Thermodynamic calculations were developed to determine the critical annealing temperature, at which a large fraction of retained austenite (~38 pct) would be obtained through the effects of solute enrichment. The experimental observation was in good agreement with the predicted results. According to the critical annealing temperature, such an ultrafine (<200 nm) M3, microstructure with optimum mechanical stability was successfully achieved. The results of this work demonstrated the superior performance with improved yield strength of 1020 to 1140 MPa and excellent ductility (>30 pct), as compared with other TRIP steels. Both angle-selective backscatter and electron backscatter diffraction techniques were employed to interpret the transformation from the deformed martensitic laths to the ultrafine austenite and ferrite duplex structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIM: Strength training of one limb results in a substantial increase in the strength of the untrained limb, however, it remains unknown what the corticospinal responses are following either eccentric or concentric strength training and how this relates to the cross-education of strength. The aim of this study was to determine if eccentric or concentric unilateral strength training differentially modulates corticospinal excitability, inhibition and the cross-transfer of strength. METHODS: Changes in contralateral (left limb) concentric strength, eccentric strength, motor-evoked potentials, short-interval intracortical inhibition and silent period durations were analyzed in groups of young adults who exercised the right wrist flexors with either eccentric (N=9) or concentric (N=9) contractions for 12 sessions over 4weeks. Control subjects (N=9) did not train. RESULTS: Following training, both groups exhibited a significant strength gain in the trained limb (concentric group increased concentric strength by 64% and eccentric group increased eccentric strength by 62%) and the extent of the cross-transfer of strength was 28% and 47% for the concentric and eccentric group, respectively, which was different between groups (P=0.031). Transcranial magnetic stimulation revealed that eccentric training reduced intracortical inhibition (37%), silent period duration (15-27%) and increased corticospinal excitability (51%) compared to concentric training for the untrained limb (P=0.033). There was no change in the control group. CONCLUSION: The results show that eccentric training uniquely modulates corticospinal excitability and inhibition of the untrained limb to a greater extent than concentric training. These findings suggest that unilateral eccentric contractions provide a greater stimulus in cross-education paradigms and should be an integral part of the rehabilitative process following unilateral injury to maximize the response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Muscle strengthening exercises are promoted for building and maintaining a healthy skeleton. We aimed to investigate the relationship between muscle strength and areal bone mineral density (BMD) at the hip in women aged 26-97 years.

METHODS: This cross-sectional study utilises data from 863 women assessed for the Geelong Osteoporosis Study. Measures of hip flexor and abductor strength were made using a hand-held dynamometer (Nicholas Manual Muscle Tester). The maximal measure from three trials on each leg was used for analyses. BMD was measured at the hip using dual energy x-ray absorptiometry (DXA; Lunar DPX-L). Total lean mass, body fat mass and appendicular lean mass were determined from whole body DXA scans. Linear regression techniques were used with muscle strength as the independent variable and BMD as the dependent variable. Models were adjusted for age and indices of body composition.

RESULTS: Measures of age-adjusted hip flexor strength and hip abductor strength were positively associated with total hip BMD. For each standard deviation (SD) increase in hip flexor strength, the increase in mean total hip BMD (SD) was 10.4 % (p = 0.009). A similar pattern was observed for hip abductor strength, with an increase in mean total hip BMD of 22.8 % (p = 0.025). All associations between hip muscle strength and total hip BMD were independent of height, but were nullified after adjusting for appendicular lean mass or total lean mass.

CONCLUSIONS: There was a positive association observed between muscle strength and BMD at the hip. However, this association was explained by measures of lean mass.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spaceflight and bed rest (BR) result in loss of muscle mass and strength. This study evaluated the effectiveness of resistance training and vibration-augmented resistance training to preserve thigh (quadriceps femoris) and calf (triceps surae) muscle cross-sectional area (CSA), isometric maximal voluntary contraction (MVC), isometric contractile speed, and neural activation (electromyogram) during 60 days of BR. Male subjects participating in the second Berlin Bed Rest Study underwent BR only [control (CTR), n = 9], BR with resistance training (RE; n = 7), or BR with vibration-augmented resistance training (RVE; n = 7). Training was performed three times per week. Thigh CSA and MVC torque decreased by 13.5 and 21.3%, respectively, for CTR (both P < 0.001), but were preserved for RE and RVE. Calf CSA declined for all groups, but more so (P < 0.001) for CTR (23.8%) than for RE (10.7%) and RVE (11.0%). Loss in calf MVC torque was greater (P < 0.05) for CTR (24.9%) than for RVE (12.3%), but not different from RE (14.8%). Neural activation at MVC remained unchanged in all groups. For indexes related to rate of torque development, countermeasure subjects were pooled into one resistance training group (RT, n = 14). Thigh maximal rate of torque development (MRTD) and contractile impulse remained unaltered for CTR, but MRTD decreased 16% for RT. Calf MRTD remained unaltered for both groups, whereas contractile impulse increased across groups (28.8%), despite suppression in peak electromyogram (12.1%). In conclusion, vibration exposure did not enhance the efficacy of resistance training to preserve thigh and calf neuromuscular function during BR, although sample size issues may have played a role. The exercise regimen maintained thigh size and MVC strength, but promoted a loss in contractile speed. Whereas contractile speed improved for the calf, the exercise regimen only partially preserved calf size and MVC strength. Modification of the exercise regimen seems warranted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tendon stiffness may be involved in limiting peak musculoskeletal forces and thus may constitute an upper limit for bone strength. The patellar tendon bone (PTB) graft, which is harvested from the patellar tendon during surgical reconstruction of the anterior cruciate ligament (ACL), is an ideal scenario to test this hypothesis. Eleven participants were recruited who had undergone surgical reconstruction of the ACL with a PTB graft 1-10 years prior to study inclusion. As previously reported, there was no side-to-side difference in thigh muscle cross-sectional area, in maximum voluntary knee extension torque, or in patellar tendon stiffness, suggesting full recovery of musculature and tendon. However, in the present study bone mineral content (BMC), assessed by peripheral quantitative computed tomography, was lower on the operated side than on the control side in four regions studied (P = 0·0019). Differences were less pronounced in the two sites directly affected by the operation (patella and tibia epiphysis) when compared to the more remote sites. Moreover, significant side-to-side differences were found in BMC in the trabecular compartment in the femoral and tibial epiphysis (P = 0·004 and P = 0·047, respectively) with reductions on the operated side, but increased in the patella (P = 0·00016). Cortical BMC, by contrast, was lower on the operated side at all sites except the tibia epiphysis (P = 0·09). These findings suggest that impaired recovery of BMC following ACL reconstruction is not because of lack of recovery of knee extensor strength or patellar tendon stiffness. The responsible mechanisms still remain to be determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogels formed by the self-assembly of peptides are promising biomaterials. The bioactive and biocompatible molecule Fmoc-FRGDF has been shown to be an efficient hydrogelator via a π-β self-assembly mechanism. Herein, we show that the mechanical properties and morphology of Fmoc-FRGDF hydrogels can be effectively and easily manipulated by tuning both the final ionic strength and the rate of pH change. The increase of ionic strength, and consequent increase in rate of gelation and stiffness, does not interfere with the underlying π-β assembly of this Fmoc-protected peptide. However, by tuning the changing rate of the system's pH through the use of glucono-δ-lactone to form a hydrogel, as opposed to the previously reported HCl methodology, the morphology (nano- and microscale) of the scaffold can be manipulated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geopolymeric recycled concrete (GRC) is a new construction material which takes environmentalsustainability into account, by using alkali solution and fly ash to completely substitute Portland cementas well as by replacing natural coarse aggregate with recycled coarse aggregate. GRC could be used togetherwith steel hollow sections to form composite section. There is very limited study on such GRC filledtubular sections. This paper presents an experimental study on GRC filled tubular stub columns. A total of 12specimens were tested. The main parameters varied in the tests are: (1) two section sizes of square hollow sections(B × t) with 200mm×6mm and 150mm×5mm; (2) different concrete types: GRC and recycled aggregateconcrete (RAC); (3) different recycled aggregate (RA) replacement ratios of 0%, 50% and 100%. The relationshipof load versus axial strain was recorded and analysed to compare the ultimate strength and failuremechanism. Meanwhile, the ductility of the columns was investigated by a ductility index (DI). The resultsshow that the ultimate strength decreased with increasing RA contents for both GRC and RAC filled columns.The influence of RA content on the strength was greater in GRC than that in RAC. The effect of RA contenton the ductility of the columns was further investigated. Simulation method for predicting load versus strainrelationship is discussed for RAC and GRC filled steel tubular columns with different RA replacement ratios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lawton et al compare the effects of continuous repetition and intra-set rest training on maximal strength and power output of the upper body. Results show that bench press training involving 4 sets of 6 continuous repetitions elicited a greater improvement in bench press strength than 8 sets of 3 repetitions at the same percentage load of their 6 repetition maximum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small diameter vascular grafts were fabricated from pure Polyurethane (PU) as well as PU reinforced with a tubular weft-knitted fabric. The tensile properties of the reinforced composite vascular grafts were compared with that of the tubular fabric itself and the pure PU vascular grafts. The elasticity and strength of the reinforced vascular grafts were improved compared with the tubular fabric. Strength of the reinforced vascular grafts was 5–10 times of the strength of the pure PU vascular grafts. Expanding the tubular fabric to increase the inner diameter of the reinforced vascular graft reduced the graft’s strength and initial modulus, but the difference was reduced as the PU content was increased. For grafts of the same inner diameter, increasing the PU content increased the thickness and strength of the graft wall, which led to a general increase in the strength and initial modulus of the composite vascular grafts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of dune sand for replacing ordinary fine aggregate in concrete has environmental benefits and the feasibility has been demonstrated in China and some Middle East countries. However, the use of dune sand tends to decrease the engineering properties (compressive strength and workability) of concrete. To improve engineering properties of dune sand concrete (DSC), the current paper is to check which strength andslump levels can be obtained by optimization of mix proportions. Results show that the ratio of cement to sand (C/S) has significant influence on the engineering properties of DSC. At low C/S ratio, the engineeringproperties of DSC are inferior to those of concretes made with normal sand (NSC). However, when C/S ratio exceeds 0.75, DSC has comparable or even better engineering properties compared to NSC. In the range ofinvestigated C/S ratio, DSC has comparable tensile splitting strength and elastic modulus to its reference NSC.Based on the experimental results, the Australia dune sand can be used as fine aggregate whenever mix proportions are properly controlled.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of low-strain deformation behavior on curl and springback in advanced high strength steels (AHSS) was assessed using a bend-under-tension test. The effect of yielding behavior on curl and springback was examined by heat-treating two dual-phase steels to induce yield point elongation, while keeping a relatively constant tensile strength and a constant sheet thickness. A dual-phase and TRIP steel with similar initial thickness and tensile strengths were also examined to investigate the effect of work-hardening on curl and springback. It is shown that while current understanding limits prediction of curl and springback in bending under tension using only the initial sheet thickness and tensile strength, both the yielding and work-hardening behavior can affect the results. Explanations for these effects are proposed in terms of the discontinuous yielding and flow stress in the materials.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Car manufacturers are under pressure to reduce vehicle mass while maintaining comfort and passenger safety for current and future vehicles. To meet this demand the steel industry has developed Advanced High Strength Steels (AHSS) that promise higher strength and improved formability compared to conventional steel grades. Even though significant research has already been performed to evaluate the material properties and forming behaviour of most AHSS types, only a limited literature is available on their necking and fracture behaviour and the effect on formability. This paper examines and compares the thinning, necking and fracture behaviour of two AHSS and one conventional steel type, namely TRIP, DP and HSLA. Uniaxial, plane and biaxial strain conditions are investigated by tensile, cup drawing and stretch forming tests and by using numerical methods. The test results indicate that significant differences exist in necking and fracture behaviour between all three steel types.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The response of HSLA steel, 590R, and dual-phase steel, DP-600, to non-uniform deformation imposed in a laboratory Bending-Under-Tension (BUT) test apparatus was evaluated. Samples were deformed with both low and high back tension forces at bend angles of 45 and 90 degrees, and evaluated to determine the ""side-wall curl,"" i.e., the curvature in the sheet section in contact with the die. The results indicate that there are no consistent differences between the two steels, 590R and DP-600. It was found that back tension, tensile strength and sheet thickness were the primary factors affecting curl. The bend angle has an influence on curl, with the curl radius at a 90ø bend angle being greater than the curl radius at a 45\mD bend angle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocomposites comprising carbon nanofibers (CNF) were prepared and evaluated in terms of morphology, mechanical performance, thermal stability and crystallization properties. It was found that addition of CNF reinforced polypropylene (PP) matrix by marginally increasing the strength and modulus, but at the expense of toughness and ductility. To improve the toughness of the composites, polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (SEBS) was used. Presence of SEBS remarkably improved the toughness and ductility of the composites. The optimum level of reinforcement was observed at 0.1 wt% of CNF in the composites. Phase morphology studies revealed that at this concentration, CNF were well dispersed in polymer phases and beyond it, agglomeration occurred. PP/SEBS/CNF (0.1 wt%) nanocomposites exhibited good strength, excellent toughness and decent modulus, which make them suitable for cost effective, light-weight, tough and stiff material for engineering applications. It was observed that thermal stability of composites is only marginally improved whereas crystallinity of PP drastically reduced by the addition of CNF.