224 resultados para fatty acid,


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low dietary intakes of the n-3 long-chain PUFA (LCPUFA) EPA and DHA are thought to be associated with increased risk for a variety of adverse  outcomes, including some psychiatric disorders. Evidence from  observational and intervention studies for a role of n-3 LCPUFA in depression is mixed, with some support for a benefit of EPA and/or DHA in major depressive illness. The present study was a double-blind randomised controlled trial that evaluated the effects of EPA+DHA supplementation (1.5 g/d) on mood and cognitive function in mild to moderately depressed  individuals. Of 218 participants who entered the trial, 190 completed the planned 12 weeks intervention. Compliance, confirmed by plasma fatty acid concentrations, was good, but there was no evidence of a difference between supplemented and placebo groups in the primary outcome - namely, the depression subscale of the Depression Anxiety and Stress Scales at 12 weeks. Mean depression score was 8.4 for the EPA+DHA group and 9.6 for the placebo group, with an adjusted difference of - 1.0 (95 % CI - 2.8, 0.8; P = 0.27). Other measures of mood, mental health and cognitive function, including Beck Depression Inventory score and attentional bias toward threat words, were similarly little affected by the intervention. In conclusion, substantially increasing EPA+DHA intake for 3 months was found not to have beneficial or harmful effects on mood in mild to moderate depression. Adding the present result to a meta-analysis of previous relevant randomised controlled trial results confirmed an overall negligible benefit of n-3 LCPUFA supplementation for depressed mood.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study was conducted to characterize caviar obtained from farmed white sturgeons (Acipenser transmontanus) subjected to different dietary treatments. Twenty caviar samples from fish fed two experimental diets containing different dietary lipid sources have been analysed for chemical composition, fatty acids and flavour volatile compounds. Fatty acid make up of caviar was only minimally influenced by dietary fatty acid composition. Irrespective of dietary treatments, palmitic acid (16:0) and oleic acid (OA, 18:1 n-9) were the most abundant fatty acid followed by docosahexaenoic acid (DHA, 22:6 n-3) and eicopentaenoic (EPA, 20:5 n-3).

Thirty-three volatile compounds were isolated using simultaneous distillation–extraction (SDE) and identified by GC–MS. The largest group of volatiles were represented by aldehydes with 20 compounds, representing the 60% of the total volatiles. n-Alkanals, 2-alkenals and 2,4-alkadienals are largely the main responsible for a wide range of flavours in caviar from farmed white surgeon

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Health authorities around the world advise ‘limiting consumption of trans   fatty acids’, however in Australia the trans fatty acid (TFA) content is not  required to be listed in the nutrition information panel unless a declaration or nutrient claim is made about fatty acids or cholesterol. Since there is limited knowledge about trans fatty acid levels in processed foods available in Australia, this study aimed to determine the levels of TFA in selected food items known to be sources of TFA from previously published studies. Food items (n=92) that contain vegetable oil and a total fat content greater than 5% were included. This criterion was used in conjunction with a review of similar studies where food items were found to contain high levels of trans fatty acids. Lipids were extracted using solvents. Gravimetric methods were used to determine total fat content and trans fatty acid levels were quantified by Attenuated Total Reflectance Fourier Transform Infrared spectroscopy. High levels of trans fatty acids were found in certain items in the Australian food supply, with a high degree of variability. Of the samples analysed, 13  contained greater than 1 g of trans fatty acids per serving size, the highest value was 8.1 g/serving. Apart from when the nutrition information panel states that the content is less than a designated low level, food labels sold in Australia do not indicate trans fatty acid levels. We suggested that health authorities seek ways to assist consumers to limit their intakes of trans fatty acids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liver-fatty acid binding protein (L-FABP) is found in high levels in enterocytes and is involved in the cytosolic solubilization of fatty acids during fat absorption. In the current studies, the interaction of L-FABP with a range of lipophilic drugs has been evaluated to explore the potential for L-FABP to provide an analogous function during the absorption of lipophilic drugs. Binding affinity for L-FABP was assessed by displacement of a fluorescent marker, 1-anilinonaphthalene-8-sulfonic acid (ANS), and the binding site location was determined via nuclear magnetic resonance chemical shift perturbation studies. It was found that the majority of drugs bound to L-FABP at two sites, with the internal site generally having a higher affinity for the compounds tested. Furthermore, in contrast to the interaction of L-FABP with fatty acids, it was demonstrated that a terminal carboxylate is not required for specific binding of lipophilic drugs at the internal site of L-FABP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intestinal fatty acid binding protein (I-FABP) is present at high levels in the absorptive cells of the intestine (enterocytes), where it plays a role in the intracellular solubilization of fatty acids (FA). However, I-FABP has also been shown to bind to a range of non-FA ligands, including some lipophilic drug molecules. Thus, in addition to its central role in FA trafficking, I-FABP potentially serves as an important intracellular carrier of lipophilic drugs. In this study we provide a detailed thermodynamic analysis of the binding and stability properties of I-FABP in complex with a series of fibrate and fenamate drugs to provide an insight into the forces driving drug binding to I-FABP. Drug binding and selectivity for I-FABP are driven by the interplay of protein−ligand interactions and solvent processes. The Gibbs free energies (ΔG°) determined from dissociation constants at 25 °C ranged from −6.2 to −10 kcal/mol. The reaction energetics indicate that drug binding to I-FABP is an enthalpy−entropy driven process. The relationship between I-FABP stability and drug binding affinity was examined by pulse proteolysis. There is a strong coupling between drug binding and I-FABP stability. The effect of an I-FABP protein sink on the kinetics and thermodynamics of tolfenamic acid permeation across an artificial phospholipid membrane were investigated. I-FABP significantly decreased the energy barrier for desorption of tolfenamic acid from the membrane into the acceptor compartment. Taken together, these data suggest that the formation of stable drug−I-FABP complexes is thermodynamically viable under conditions simulating the reactant concentrations likely observed in vivo and maybe a significant biochemical process that serves as a driving force for passive intestinal absorption of lipophilic drugs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intestinal fatty acid binding protein (I-FABP) is present at high levels in the absorptive cells of the intestine (enterocytes) where it plays a role in the intracellular solubilization of fatty acids (FA). However, I-FABP has also been shown to bind to a range of non-FA ligands, including some lipophilic drug molecules, albeit with generally lower affinity than FA. The significance of these lower affinity interactions with exogenous compounds is not known. In this manuscript, we describe further characterization of drug-rat I-FABP binding interactions using a thermal-shift assay. A structural explanation of the observed affinity of rat I-FABP for different drugs based on spectroscopic data and modeling experiments is presented. In addition, immunocytochemistry has been used to probe the expression of I-FABP in a cell culture model reflective of the absorptive cells of the small intestine. Taken together, these data suggest a possible role for I-FABP in the disposition of some lipophilic drugs within the enterocyte.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liver-fatty acid binding protein (L-FABP) is found in high levels in enterocytes and is involved in cytosolic solubilization of fatty acids. In addition, L-FABP has been shown to bind endogenous and exogenous lipophilic compounds, suggesting that it may also play a role in modulating their absorption and disposition within enterocytes. Previously, we have described binding of L-FABP to a range of drugs, including a series of fibrates. In the present study, we have generated structural models of L-FABP-fibrate complexes and undertaken thermodynamic analysis of the binding of fibrates containing either a carboxylic acid or ester functionality. Analysis of the current data reveals that both the location and the energetics of binding are different for fibrates that contain a carboxylate compared to those that do not. As such, the data presented in this study suggest potential mechanisms that underpin molecular recognition and dictate specificity in the interaction between fibrates and L-FABP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transcellular diffusion across the absorptive epithelial cells (enterocytes) of the small intestine is the main route of absorption for most orally administered drugs. The process by which lipophilic compounds transverse the aqueous environment of the cytoplasm, however, remains poorly defined. In the present study, we have identified a structurally diverse group of lipophilic drugs that display low micromolar binding affinities for a cytosolic lipid-binding protein—intestinal fatty acid-binding protein (I-FABP). Binding to I-FABP significantly enhanced the transport of lipophilic drug molecules across a model membrane, and the degree of transport enhancement was related to both drug lipophilicity and I-FABP binding affinity. These data suggest that intracellular lipid-binding proteins such as I-FABP may enhance the membrane transport of lipophilic xenobiotics and facilitate drug access to the enterocyte cytoplasm and cytoplasmic organelles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed expedient and reliable methods to isolate cyclosporin synthetase for in vitro biosynthesis of cyclosporins. We have examined enzyme purification strategies suited to large-scale processing and present a chromatographic sequence that serves as a pilot model for industrial scale preparation of cyclosporin synthetase from cyclosporin producing fungi. A chromatographic sequence consisting of ammonium sulfate precipitation → gel filtration → hydrophobic interaction chromatography → anion exchange chromatography, yielded an electrophoretically homogeneous cyclosporin synthetase preparation (Coomassie G-250 brilliant blue staining). Furthermore, a native polyacrylamide gel electrophoresis system was developed for the isolation of active cyclosporin synthetase enzyme from crude extracts of cyclosporin producing fungi. The environmental factors affecting enzyme stability and the continuity of the in vitro cyclosporin biosynthetic reaction-temperature, pH, and substrate depletion were assessed and manageable conditions have been defined for sustainable cyclosporin biosynthesis with enzyme isolates. Cyclosporin synthetase exhibited an optimal temperature range of 24–29 °C and a pH optimum of 7.6. The native enzyme displayed a pI of 5.7, as determined by isoelectric focusing. The industrial implementation of an in vitro biosynthetic approach could potentially prove useful for the production of important therapeutic cyclosporins which occur as only minor fermentation by-products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intestinal fatty acid-binding protein (I-FABP) is a small protein that binds long-chain dietary fatty acids in the cytosol of the columnar absorptive epithelial cells (enterocytes) of the intestine. The binding cavity of I-FABP is much larger than is necessary to bind a fatty acid molecule, which suggests that the protein may be able to bind other hydrophobic and amphipathic ligands such as lipophilic drugs. Herein we describe the binding of three structurally diverse lipophilic drugs, bezafibrate, ibuprofen (both R- and S-isomers) and nitrazepam to I-FABP. The rank order of affinity for I-FABP determined for these compounds was found to be R-ibuprofen {approx} bezafibrate > S-ibuprofen >> nitrazepam. The binding affinities were not directly related to aqueous solubility or partition coefficient of the compounds; however, the freely water-soluble drug diltiazem showed no affinity for I-FABP. Drug-I-FABP interaction interfaces were defined by analysis of chemical shift perturbations in NMR spectra, which revealed that the drugs bound within the central fatty acid binding cavity. Each drug participated in a different set of interactions within the cavity; however, a number of common contacts were observed with residues also involved in fatty acid binding. These data suggest that the binding of non-fatty acid lipophilic drugs to I-FABP may increase the cytosolic solubility of these compounds and thereby facilitate drug transport from the intestinal lumen across the enterocyte to sites of distribution and metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An isolation program targeting Thraustochytrids (marine fungoid protists) from 19 different Atlantic Canadian locations was performed. Sixty-eight isolates were screened for biomass, total fatty acid (TFA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) content. Analysis of fatty acid methyl ester results discerned four distinctive clusters based on fatty acid profiles, with biomass ranging from 0.1 to 2.3 g L−1, and lipid, EPA, and DHA contents ranging from 27.1 to 321.14, 2.97 to 21.25, and 5.18 to 83.63 mg g−1 biomass, respectively. ONC-T18, was subsequently chosen for further manipulations. Identified using 18S rRNA gene sequencing techniques as a Thraustochytrium sp., most closely related to Thraustochytrium striatum T91-6, ONC-T18 produced up to 28.0 g L−1 biomass, 81.7% TFA, 31.4% (w/w biomass) DHA, and 4.6 g L−1 DHA under optimal fermentation conditions. Furthermore, this strain was found to produce the carotenoids and xanthophylls astaxanthin, zeaxanthin, canthaxanthin, echinenone, and β-carotene. Given this strain’s impressive productivity when compared to commercial strains, such as Schizochytrium sp. SR21 (which has only 50% TFA), coupled with its ability to grow at economical nitrogen and very low salt concentrations (2 g L−1), ONC-T18 is seen as an ideal candidate for both scale-up and commercialization.