127 resultados para epoxy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effective dispersion of carbon nanotubes (CNTs) in a thermoset was achieved using ionic liquid as the dispersion-curing agent. We preferentially dispersed multiwalled carbon nanotubes (MWCNTs) down to individual tube levels in epoxy resin. Here the dispersion is ruled by the depletion of physical bundles within the MWCNT networks, for which molecular ordering of ionic liquids is considered responsible. The quantitative analyses using ultra small angle X-ray scattering (USAXS) confirmed the dispersion of individual MWCNTs in the matrix. The distance between the dispersed nanotubes was calculated at different nanotube loadings using the power law fitting of the USAXS data. The fine dispersion and subsequent curing, both controlled by ionic liquid, lead to composites with substantially enhanced fracture mechanical and thermomechanical properties with no reduction in thermal properties. Merging processing techniques of nanocomposites with ionic liquid for efficient dispersion of nanotubes and preferential curing of thermosets facilitates the development of new, high performance materials.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of processing conditions and intercalant chemistry in montmorillonite clays on the dispersion, morphology and mechanical properties of two epoxy/clay nanocomposite systems was investigated in this paper. This work highlights the importance of employing complementary techniques (X-ray diffraction, small angle X-ray scattering, optical microscopy and transmission electron microscopy) to correlate nanomorphology to macroscale properties. Materials were prepared using an out of autoclave manufacturing process equipped to generate rapid heating rates and mechanical vibration. The results suggested that the quaternary ammonium surfactant on C30B clay reacted with the epoxy during cure, while the primary ammonium surfactant (I.30E) catalysed the polymerisation reaction. These effects led to important differences in nanocomposite clay morphologies. The use of mechanical vibration at 4 Hz prior to matrix gelation was found to facilitate clay dispersion and to reduce the area fraction of I.30E clay agglomerates in addition to increasing flexural strength by over 40%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herein we report a novel approach to toughen epoxy thermosets using a block ionomer, i.e., sulfonated polystyrene-block-poly(ethylene-co-butylene)-block- polystyrene (SSEBS). SSEBS was synthesized by sulfonation of SEBS with 67 wt % polystyrene (PS). Phase morphology of the epoxy/SSEBS blends can be controlled at either nanometer or micrometer scale by simply adjusting the sulfonation degree of SSEBS. It has been found that there exists a critical degree of sulfonation (10.8 mol %) forming nanostructures in these epoxy/SSEBS blends. Above this critical value, macrophase separation can be avoided and only microphase separation occurs, yielding transparent nanostructured blends. All epoxy/SSEBS blends display increased fracture toughness compared to neat epoxy. But the toughening efficiency varies with the phase domain size, and their correlation has been established over a broad range of length scales from nanometers to a few micrometers. In the nanostructured blends with SSEBS of high sulfonation degrees, the fracture toughness decreases with decreasing size of the phase domains. In the macrophase-separated blends, only a slight improvement in toughness can be obtained with SSEBS of low sulfonation degrees. The epoxy blend with submicrometer phase domains in the range 0.05-1.0 μm containing SSEBS of a moderate degree of sulfonation (5.8 mol %) displays the maximum toughness. This study has clearly clarified the role of phase domain size on toughening efficiency in epoxy thermosets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis addresses an important issue in polymer materials science, the toughening of thermosetting polymers. A novel approach has been developed, i.e., the use of block ionomers/complexes to promote compatibilization with thermosetting epoxies. The morphology and mechanical properties of the resulting nanostructured epoxies were intensively studied to establish structure-property correlation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis the crashworthiness of composite tubular structures was investigated along with the property structure relationships of a glass/polypropylene material. The energy absorption capacity of tubular structures in a number of different testing configurations was made. Two materials; carbon/epoxy pre-preg and a glass/polypropylene dry pre-preg were investigated.