56 resultados para durability


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article examines the history of four islands used for incarceration in Australia: the ‘secondary punishment’ of convicts on Norfolk Island; the management and quarantine of indigenous people on Palm Island; the quarantine of all new migrants and visitors on Bruny Island; and the incarceration of enemy aliens on Rottnest Island. Incarceration has been used throughout Australia’s history as a method of social and political control, targeting categories of people perceived to pose a threat to the racial composition, social cohesion, or national security of the Australian community. By providing a space both separate and invisible to the community, Australia’s carceral islands served as a solution to a recurring problem for a young nation apprehensive about the composition, durability and security of its community. The human consequences of incarceration could be devastating.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, fabrics having a superhydrophobic and superoleophobic surface were prepared by a wet-chemistry coating technique using a coating solution containing hydrolyzed fluorinated alkyl silane and fluorinated-alkyl polyhedral oligomeric silsesquioxane. The coating shows remarkable self-healing superhydrophobic and superoleophobic properties and excellent durability against UV light, acid, repeated machine washes, and severe abrasion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Latest trends in waste heat recovery include systems like Thermo Electric Generation (TEG), Rankine cycle, and active warm up systems. The advantages and disadvantages of different approaches are critically discussed and compared with a novel and effective oil heating system that can deliver between 7% and 12% reductions of CO2 emissions and fuel consumption. The comparison includes the expected CO2 and fuel saving potential related to the legal drive cycle as well as real world driving, effects on regulated exhaust emissions, utilisation of resources, maintenance and service, vehicle performance, comfort, noise, and durability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A robust, superamphiphobic fabric with a novel self-healing ability to autorepair from chemical damage is prepared by a two-step wet-chemistry coating technique using an easily available material system consisting of poly(vinylidene fluoride-co-hexafluoropropylene), fluoroalkyl silane, and modified silica nanoparticles. The coated fabrics can withstand at least 600 cycles of standard laundry and 8000 cycles of abrasion without apparently changing the superamphiphobicity. The coating is also very stable to strong acid/base, ozone, and boiling treatments. After being damaged chemically, the coating can restore its super liquid-repellent properties by a short-time heating treatment or room temperature ageing. This simple but novel and effective coating system may be useful for the development of robust protective clothing for various applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wetsuits are an integral part of surfing especially in the southern regions of Australia. There is currently little information about mechanical, comfort and thermal properties of wetsuits. There is a demand from wetsuit manufacturers to better understand the neoprene properties and wetsuit performance. The performance characteristics of eight topselling wetsuits, from both high end and low end of the market, were examined. These characteristics include thickness, elasticity, bursting strength, hydrophobicity, thermal conductivity and seal strength. Tensile assessment revealed that neoprene foam was strong and its stretch recovery was well beyond 1.6 times of the original length. Neoprene was found to be hydrophobic with very low surface energy. High-end wetsuits with higher thickness showed slightly higher thermal resistance than low-end wetsuits, indicating that both thickness and bulk density of neoprene influenced thermal properties. High-end wetsuits with fluid seal were stronger than low-end wetsuits with stitched seal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Catalyst support materials exhibit great influence on the performance and durability of proton exchange membrane (PEM) fuel cells. This minireview article summarises recent developments into carbon nanotube-based support materials for PEM fuel cells, including the membrane electrode assembly (MEA). The advantages of using CNTs to promote catalyst performance and stability, a perspective on research directions and strategies to improve fuel cell performance and durability are discussed. It is hoped that this minireview will act as a conduit for future developments in catalyst supports and MEA design for PEM fuel cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large-span steel frame structures prove to be an ideal choice for their speed of construction, relatively low cost, strength, durability and structural design flexibility. For this type of structure, the beam-column connections are critical for its structural integrity and overall stability. This is because a steel frame generally fails first at its connectors, due to the change in stress redistribution with adjacent members and material related failures, caused by various factors such as fire, seismic activity or material deterioration. Since particular attention is required at a steel frame’s connection points, this study explores the applicability of a comprehensive structural health monitoring (SHM) method to identify early damage and prolong the lifespan of connection points of steel frames. An impact hammer test was performed on a scale-model steel frame structure, recording its dynamic response to the hammer strike via an accelerometer. The testing procedure included an intact scenario and two damage scenarios by unfastening four bolt connections in an accumulating order. Based entirely on time-domain experimental data for its calibration, an Auto Regressive Average Exogenous (ARMAX) model is used to create a simple and accurate model for vibration simulation. The calibrated ARMAX model is then used to identify various bolt-connection related damage scenarios via R2 value. The findings in this study suggest that the proposed time-domain approach is capable of identifying structural damage in a parsimonious manner and can be used as a quick or initial solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemical doping with foreign atoms is an effective approach to significantly enhance the electrochemical performance of the carbon materials. Herein, sulfur-doped three-dimensional (3D) porous reduced graphene oxide (RGO) hollow nanosphere frameworks (S-PGHS) are fabricated by directly annealing graphene oxide (GO)-encapsulated amino-modified SiO2 nanoparticles with dibenzyl disulfide (DBDS), followed by hydrofluoric acid etching. The XPS and Raman spectra confirmed that sulfur atoms were successfully introduced into the PGHS framework via covalent bonds. The as-prepared S-PGHS has been demonstrated to be an efficient metal-free electrocatalyst for oxygen reduction reaction (ORR) with the activity comparable to that of commercial Pt/C (40%) and much better methanol tolerance and durability, and to be a supercapacitor electrode material with a high specific capacitance of 343 F g(-1), good rate capability and excellent cycling stability in aqueous electrolytes. The impressive performance for ORR and supercapacitors is believed to be due to the synergistic effect caused by sulfur-doping enhancing the electrochemical activity and 3D porous hollow nanosphere framework structures facilitating ion diffusion and electronic transfer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Discarded silicone products can be recycled to prepare superhydrophobic powder by simply burning and smashing. The powder can be used to fabricate a superhydrophobic surface with mechanical durability such that the superhydrophobicity was kept after 50 abrasion cycles. A robust electroconductive superhydrophobic surface can also be obtained by this simple method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Research in graphene-based energy materials is a rapidly growing area. Many graphene-based energy applications involve interfacial processes. To enable advances in the design of these energy materials, such that their operation, economy, efficiency and durability is at least comparable with fossil-fuel based alternatives, connections between the molecular-scale structure and function of these interfaces are needed. While it is experimentally challenging to resolve this interfacial structure, molecular simulation and computational chemistry can help bridge these gaps. In this Review, we summarise recent progress in the application of computational chemistry to graphene-based materials for fuel cells, batteries, photovoltaics and supercapacitors. We also outline both the bright prospects and emerging challenges these techniques face for application to graphene-based energy materials in future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Air-permeable, super-liquid-repellent fabrics show strong resistance to various liquid fluids and have self-cleaning, anti-sticking, and anti-contaminating functions, which are very useful for development of function clothing. However, most of the liquid repellent fabrics are poor in durability.This book elaborated the development of durable super-liquid-repellent fabrics and explore novel property of liquid-repellent fabrics. It has resulted in two novel concepts to prepare durable liquid repellent fabrics. By combining liquid repellent with liquid absorbing features on different sides of single layer fabric, a novel directional-fluid transport property was observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tony Woods: Archive, edited by Andrew Gaynor and published locally in 2013, records the durability of the artist’s primary painting practice as will as his filmmkaing, a painting practice in which he has accrued a level of prestige over many years and changes of circumstance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fabrication of superhydrophobic surfaces with mechanical durability is challenging because the surface microstructure is easily damaged. Herein, we report superhydrophobic conductive graphite nanoplatelet (GNP)/vapor-grown carbon fiber (VGCF)/polypropylene (PP) composite coatings with mechanical durability by a hot-pressing method. The as-prepared GNP/VGCF/PP composite coatings showed water contact angle (WCA) above 150° and sliding angle (SA) less than 5°. The superhydrophobicity was improved with the increase of VGCF content in the hybrid GNP and VGCF fillers. The more VGCFs added in the GNP/VGCF/PP composite coating, the higher porosity on the surface was formed. Compared to the GNP/PP and VGCF/PP composite coatings, the GNP and VGCF hybrid fillers exhibited more remarkable synergistic effect on the electrical conductivity of the GNP/VGCF/PP composite coatings. The GNP/VGCF/PP composite coating with GNP:VGCF = 2:1 possessed a sheet resistance of 1 Ω/sq. After abrasion test, the rough microstructure of the GNP/VGCF/PP (2:1) composite coating was mostly restored and the composite coating retained superhydrophobicity, but not for the VGCF/PP composite coating. When the superhydrophobic surface is mechanically damaged with a loss of superhydrophobicity, it can be easily repaired by a simple way with adhesive tapes. Moreover, the oil-fouled composite surface can regenerate superhydrophobicity by wetting the surface with alcohol and subsequently burning off alcohol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

 Knowledge of the degree of hydration of cement pastes is critical for determining properties such as the durability of concrete. As part of an integrated study on the prediction of chloride ingress in reinforced concrete, synchrotron Xray powder diffraction was used to estimate the degree of hydration of cement pastes. While for the past 20 years the composition of Portland cement has been determined by Rietveld analysis of X-ray diffraction, nevertheless there are a number of factors, including the amorphous content of the cement and relative proportion of mineral polymorphs present in the initial clinker, whose impact on the analysis are still not completely understood. Analysis of the resulting diffraction patterns indicated enhanced identification of polymorphs of alite, belite, ferrite and aluminate, which are present in the initial unhydrated cement and clinker, as well as improved quantification of hydrated crystalline phases such as calcium hydroxide and ettringite, which are key phases determining the speed of the chemical reactions in cement. In this paper we describe the experience that we have gained in the determination of the degree of hydration of cement pastes. We detail the standards and precautions that we took to characterize production cements and their hydration products.