58 resultados para dorsolateral prefrontal cortex


Relevância:

80.00% 80.00%

Publicador:

Resumo:

High-performance liquid chromatography with chemiluminescence detection based on the reaction with acidic potassium permanganate and formaldehyde was explored for the determination of neurotransmitters and their metabolites. The neurotransmitters norepinephrine and dopamine were quantified in the left and right hemispheres of rat hippocampus, nucleus accumbens and prefrontal cortex, and the metabolites vanillylmandelic acid, 3,4-dihydrophenylacetic acid, 5-hydroxyindole-3-acetic acid and homovanillic acid were identified in human urine. Under optimised chemiluminescence reagent conditions, the limits of detection for these analytes ranged from 2.5 × 10−8 to 2.5 × 10−7 M. For the determination of neurotransmitter metabolites in urine, a two-dimensional high-performance liquid chromatography (2D-HPLC) separation operated in heart-cutting mode was developed to overcome the peak capacity limitations of the one-dimensional separation. This approach provided the greater separation power of 2D-HPLC with analysis times comparable to conventional one-dimensional separations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

INTRODUCTION: Executive functions are high-order aspects of cognition heavily dependent upon the prefrontal cortex. Both prefrontal cortex activity and executive function task performance are enhanced by participation in aerobic physical activity, suggesting that a lack of such activity during the bed rest model of prolonged weightlessness might induce executive function deficits. METHODS: Twenty-four healthy males (ages 21-45 yr) undertook 60 d of head-down bed rest (-6 degrees) for the 2nd Berlin Bed Rest Study (BBR2-2). Three executive function tasks (Iowa Gambling Task, working memory, and flanker) and a reaction time task were administered before, during, and after bed rest. RESULTS: Iowa Gambling Task scores were significantly worse during bed rest (1.7 +/- 6.9) than in other sessions (24.3 +/- 7.8). Effects on working memory and flanker task performance were less obvious, requiring practice effects to be considered. Reaction time was significantly slower after bed rest (569 +/- 42 ms) than in earlier tests (529 +/- 45 ms). There was also significantly less intrasubject variability in reaction time after bed rest, consistent with more efficient executive functioning at this stage. DISCUSSION: Our results provide some evidence for a detrimental effect of bed rest on executive functioning. Whether this stems from a lack of aerobic physical activity and/or changes in the prefrontal cortex remains to be determined. Cognitive effects of bed rest could have implications for the planned human exploration of Mars, and for medical and lifestyle conditions with inadequate levels of aerobic physical activity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

By restricting physical activity levels, the bed rest simulation of weightlessness could be associated with changes in prefrontal cortex functioning that manifest as cognitive decrements, particularly for executive cognitive functions. We aimed to determine if performance on an executive function task was indeed affected by bed rest. The Iowa Gambling Task, a card game measuring real-life decision making processes, was administered to 25 healthy males (aged 21-45 years) selected to undergo 60 days of 6 degrees head-down tilt bed rest for the 2nd Berlin BedRest Study (BBR2-2). Testing was conducted either 6 days before beginning bed rest (n=13) or on the 51st day of bed rest (n=12). The task performance scores of subjects tested before bed rest were not significantly different from those tested during bed rest. However, subjects tested during bed rest failed to adapt their card selection strategy as the Iowa Gambling Task progressed. This was unlike the subjects tested before bed rest, who switched between decks on consecutive card selections less frequently in latter stages of the task. An influence of prolonged bed rest on decision making could have implications for the planning of human spaceflights to Mars, or for any circumstance in which adequate physical activity levels are not achieved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The medial prefrontal cortex (mPFC) and the right temporo-parietal junction (rTPj) are highly involved in social understanding, a core area of impairment in autism spectrum disorder (ASD). We used fMRI to investigate sex differences in the neural correlates of social understanding in 27 high-functioning adults with ASD and 23 matched controls. There were no differences in neural activity in the mPFC or rTPj between groups during social processing. Whole brain analysis revealed decreased activity in the posterior superior temporal sulcus in males with ASD compared to control males while processing social information. This pattern was not observed in the female sub-sample. The current study indicates that sex mediates the neurobiology of ASD, particularly with respect to processing social information.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The authors investigated whether male violent juvenile offenders demonstrate any differences in local functional connectivity indicative of delayed maturation of the brain that may serve as a biomarker of violence. Twenty-nine violent juvenile offenders and 28 age-matched controls were recruited. Regional homogeneity (ReHo) method was used to analyze resting-state magnetic resonance images. Violent offenders showed significantly lower ReHo values in the right caudate, right medial prefrontal cortex, and left precuneus, and higher values in the right supramarginal gyrus than the controls. These regions had both high sensitivity and specificity in distinguishing between the two groups suggesting that dysfunction in these regions can be used to correctly classify those individuals who are violent. Dysfunction in the right medial prefrontal-caudate circuit may, therefore, represent an important biomarker of violence juvenile males.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

AIMS: To contrast functional connectivity on ventral and dorsal striatum networks in cocaine dependence relative to pathological gambling, via a resting-state functional connectivity approach; and to determine the association between cocaine dependence-related neuroadaptations indexed by functional connectivity and impulsivity, compulsivity and drug relapse. DESIGN: Cross-sectional study of 20 individuals with cocaine dependence (CD), 19 individuals with pathological gambling (PG) and 21 healthy controls (HC), and a prospective cohort study of 20 CD followed-up for 12 weeks to measure drug relapse. SETTING AND PARTICIPANTS: CD and PG were recruited through consecutive admissions to a public clinic specialized in substance addiction treatment (Centro Provincial de Drogodependencias) and a public clinic specialized in gambling treatment (AGRAJER), respectively; HC were recruited through community advertisement in the same area in Granada (Spain). MEASUREMENTS: Seed-based functional connectivity in the ventral striatum (ventral caudate and ventral putamen) and dorsal striatum (dorsal caudate and dorsal putamen), the Kirby delay-discounting questionnaire, the reversal-learning task and a dichotomous measure of cocaine relapse indicated with self-report and urine tests. FINDINGS: CD relative to PG exhibit enhanced connectivity between the ventral caudate seed and subgenual anterior cingulate cortex, the ventral putamen seed and dorsomedial pre-frontal cortex and the dorsal putamen seed and insula (P≤0.001, kE=108). Connectivity between the ventral caudate seed and subgenual anterior cingulate cortex is associated with steeper delay discounting (P≤0.001, kE=108) and cocaine relapse (P≤0.005, kE=34). CONCLUSIONS: Cocaine dependence-related neuroadaptations in the ventral striatum of the brain network are associated with increased impulsivity and higher rate of cocaine relapse.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neuroimaging studies have shown neuromuscular electrical stimulation (NMES)-evoked movements activate regions of the cortical sensorimotor network, including the primary sensorimotor cortex (SMC), premotor cortex (PMC), supplementary motor area (SMA), and secondary somatosensory area (S2), as well as regions of the prefrontal cortex (PFC) known to be involved in pain processing. The aim of this study, on nine healthy subjects, was to compare the cortical network activation profile and pain ratings during NMES of the right forearm wrist extensor muscles at increasing current intensities up to and slightly over the individual maximal tolerated intensity (MTI), and with reference to voluntary (VOL) wrist extension movements. By exploiting the capability of the multi-channel time domain functional near-infrared spectroscopy technique to relate depth information to the photon time-of-flight, the cortical and superficial oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin concentrations were estimated. The O2Hb and HHb maps obtained using the General Linear Model (NIRS-SPM) analysis method, showed that the VOL and NMES-evoked movements significantly increased activation (i.e., increase in O2Hb and corresponding decrease in HHb) in the cortical layer of the contralateral sensorimotor network (SMC, PMC/SMA, and S2). However, the level and area of contralateral sensorimotor network (including PFC) activation was significantly greater for NMES than VOL. Furthermore, there was greater bilateral sensorimotor network activation with the high NMES current intensities which corresponded with increased pain ratings. In conclusion, our findings suggest that greater bilateral sensorimotor network activation profile with high NMES current intensities could be in part attributable to increased attentional/pain processing and to increased bilateral sensorimotor integration in these cortical regions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mitochondrial dysfunction has a critical role in the pathophysiology of mood disorders and treatment response. To investigate this, we established an animal model exhibiting a state of antidepressant treatment resistance in male Wistar rats using 21 days of adrenocorticotropic hormone (ACTH) administration (100 μg per day). First, the effect of ACTH treatment on the efficacy of imipramine (10 mg kg(-1)) was investigated alongside its effect on the prefrontal cortex (PFC) mitochondrial function. Second, we examined the mood-regulatory actions of chronic (7 day) high-frequency nucleus accumbens (NAc) deep-brain stimulation (DBS; 130 Hz, 100 μA, 90 μS) and concomitant PFC mitochondrial function. Antidepressant-like responses were assessed in the open field test (OFT) and forced swim test (FST) for both conditions. ACTH pretreatment prevented imipramine-mediated improvement in mobility during the FST (P<0.05). NAc DBS effectively improved FST mobility in ACTH-treated animals (P<0.05). No improvement in mobility was observed for sham control animals (P>0.05). Analyses of PFC mitochondrial function revealed that ACTH-treated animals had decreased capacity for adenosine triphosphate production compared with controls. In contrast, ACTH animals following NAc DBS demonstrated greater mitochondrial function relative to controls. Interestingly, a proportion (30%) of the ACTH-treated animals exhibited heightened locomotor activity in the OFT and exaggerated escape behaviors during the FST, together with general hyperactivity in their home-cage settings. More importantly, the induction of this mania-like phenotype was accompanied by overcompensative increased mitochondrial respiration. Manifestation of a DBS-induced mania-like phenotype in imipramine-resistant animals highlights the potential use of this model in elucidating mechanisms of mood dysregulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neural biomarkers for the active detrimental effects of cocaine dependence (CD) are lacking. Direct comparisons of brain connectivity in cocaine-targeted networks between CD and behavioural addictions (i.e. pathological gambling, PG) may be informative. This study therefore contrasted the resting-state functional connectivity networks of 20 individuals with CD, 19 individuals with PG and 21 healthy individuals (controls). Study groups were assessed to rule out psychiatric co-morbidities (except alcohol abuse and nicotine dependence) and current substance use or gambling (except PG). We first examined global connectivity differences in the corticolimbic reward network and then utilized seed-based analyses to characterize the connectivity of regions displaying between-group differences. We examined the relationships between seed-based connectivity and trait impulsivity and cocaine severity. CD compared with PG displayed increased global functional connectivity in a large-scale ventral corticostriatal network involving the orbitofrontal cortex, caudate, thalamus and amygdala. Seed-based analyses showed that CD compared with PG exhibited enhanced connectivity between the orbitofrontal and subgenual cingulate cortices and between caudate and lateral prefrontal cortex, which are involved in representing the value of decision-making feedback. CD and PG compared with controls showed overlapping connectivity changes between the orbitofrontal and dorsomedial prefrontal cortices and between amygdala and insula, which are involved in stimulus-outcome learning. Orbitofrontal-subgenual cingulate cortical connectivity correlated with impulsivity and caudate/amygdala connectivity correlated with cocaine severity. We conclude that CD is linked to enhanced connectivity in a large-scale ventral corticostriatal-amygdala network that is relevant to decision making and likely to reflect an active cocaine detrimental effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The symptoms of schizophrenia are frequently divided into positive and negative subtypes. It has been suggested that the negative symptoms are similar to those seen with prefrontal lobe cortical dysfunction. Several neuropsychological investigations of that hypothesis have been carried out, but none have directly compared a negative symptom group with a positive symptom group on the same test battery. In the present study, the Positive and Negative Syndrome Scale (PANSS; Kay, Fiszbein, & Opler, 1987) was used to distinguish two groups of 20 patients with schizophrenia with predominant positive or negative symptoms. A battery of 7 neuropsychological tests considered capable of isolating prefrontal lobe dysfunction was administered. A significant group difference was noted on 6 of the tests; the negative symptom group performed much worse than the positive symptom group. The results of this study support the hypothesis that a relationship exists between the negative symptoms of schizophrenia and prefrontal lobe dysfunction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mirror neuron (MN) hypothesis of autism has received considerable attention, but to date has produced inconsistent findings. Using functional MRI, participants with high functioning autism or Asperger's syndrome were compared to typically developing individuals (n=12 in each group). Participants passively observed hand gestures that included waving, pointing, and grasping. Concerning the MN network, both groups activated similar regions including prefrontal, inferior parietal and superior temporal regions, with the autism group demonstrating significantly greater activation in the dorsal premotor cortex. Concerning other regions, participants with autism demonstrated increased activity in the anterior cingulate and medial frontal gyrus, and reduced activation in calcarine, cuneus, and middle temporal gyrus. These results suggest that during observation of hand gestures, frontal cortex activation is affected in autism, which we suggest may be linked to abnormal functioning of the MN system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis demonstrated that when participants performed two tasks concurrently, the activity of inhibitory neurons in the brain was increased in younger adults, yet decreased in older adults. In addition, our results indicated that dual-task performance in older adults may depend on the activation of prefrontal to motor cortex pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present study was to examine quantitative differences in lobar cerebral cortical volumes in a healthy adult population. Quantitative volumetric MRI of whole brain, cerebral and cerebellar volumes was performed in a cross-sectional analysis of 97 normal volunteers, with segmented frontal, temporal, parietal and occipital cortical volumes measured in a subgroup of 60 subjects, 30 male and 30 female, matched for age and sex. The right cerebral hemisphere was larger than the left across the study group with a small (<1%) but significant difference in symmetry (P < 0.001). No difference was found between volumes of right and left cerebellar hemispheres. Rightward cerebral cortical asymmetry (right larger than left) was found to be significant across all lobes except parietal. Males had greater cerebral, cerebellar and cerebral cortical lobar volumes than females. Larger male cerebral cortical volumes were seen in all lobes except for left parietal. Females had greater left parietal to left cerebral hemisphere and smaller left temporal to left cerebral hemisphere ratios. There was a mild reduction in cerebral volumes with age, more marked in males. This study confirms and augments past work indicating underlying structural asymmetries in the human brain, and provides further evidence that brain structures in humans are differentially sensitive to the effects of both age and sex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Excitability at the motoneuron pool and motor cortex is specifically modulated in lengthening compared to isometric contractions. J Neurophysiol 101: 2030–2040, 2009. First published January 28, 2008; doi:10.1152/jn.91104.2008. Neural control of muscle contraction seems to be unique during muscle lengthening. The present study aimed to determine the specific sites of modulatory control for lengthening compared with isometric contractions. We used stimulation of the motor cortex and corticospinal tract to observe changes at the spinal and cortical levels. Motor-evoked potentials (MEPs) and cervicomedullary MEPs (CMEPs) were evoked in biceps brachii and brachioradialis during maximal and submaximal lengthening and isometric contractions at the same elbow angle. Sizes of CMEPs and MEPs were lower in lengthening contractions for both muscles (by 28 and 16%, respectively; P 0.01), but MEP-to-CMEP ratios increased (by 21%; P 0.05). These results indicate reduced excitability at the spinal level but enhanced motor cortical excitability for lengthening compared with isometric muscle contractions.