44 resultados para cracking catalitico, biocombustibili, H-ZSM5, alghe, pirolisi


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rare earth organic compounds can provide an environmentally safe and non-toxic alternative to chromates as corrosion inhibitors for some steel and aluminium applications. For steel lanthanum 4-hydroxy cinnamate offers corrosion protection and reduces the susceptibility to hydrogen embrittlement. Recent work has also indicated that it inhibits the corrosion of steel in environments containing high levels of carbon dioxide. For aluminium alloys, cerium diphenyl phosphate provides excellent corrosion inhibition in chloride environments, and reduces susceptibly to stress corrosion cracking. Furthermore, for both steel and aluminium alloys filiform corrosion can be suppressed when rare earth inhibitor compounds are added as pigments to polymer coatings. The levels of inhibition observed are thought to be due to synergistic effects between the rare earth and organic parts of these novel compounds, and are related to the various species that may be present in the complex chemical conditions that develop in solution close to a metal surface. This paper reviews some of the published research conducted by the group at Deakin University over recent years.©2014 Institute of Materials, Minerals and Mining.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The contact load-bearing response and surface damage resistance of multilayered hierarchical structured (MHSed) titanium were determined and compared to monolithic nanostructured titanium. The MHS structure was formed by combining cryorolling with a subsequent Surface Mechanical Attrition Treatment (SMAT) producing a surface structure consisted of an outer amorphous layer containing nanocrystals, an inner nanostructured layer and finally an ultra-fine grained core. The combination of a hard outer layer, a gradual transition layer and a compliant core results in reduced indentation depth, but a deeper and more diffuse sub-surface plastic deformation zone, compared to the monolithic nanostructured Ti. The redistribution of surface loading between the successive layers in the MHS Ti resulted in the suppression of cracking, whereas the monolithic nanograined (NG) Ti exhibited sub-surface cracks at the boundary of the plastic strain field. Finite element models with discrete layers and mechanically graded layersrepresenting the MHS system confirmed the absence of cracking and revealed a 38% decrease in shear stress in the sub-surface plastic strain field, compared to the monolithic NG Ti. Further, the mechanical gradation achieves a more gradual stress distribution which mitigates the interface failure and increases the interfacial toughness, thus providing strong resistance to loading damage. © 2014 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mitigation of external corrosion of energy pipelines by a combination of barrier coatings and Cathodic Protection (CP) is not always effective. Even when design specifications are properly met, the shielding of cathodic protection current from reaching steel surface by disbonded barrier coatings, often referred to as cathodic shielding, may lead to severe corrosion problems such as deep pitting, high and near neutral pH Stress Corrosion Cracking (SCC) and Microbiologically Induced Corrosion (MIC). Unfortunately, current indirect assessment methods used in the pipeline industry have serious difficulties in detecting such corrosion problems. This paper provides a brief review of current techniques and their limitations when being applied under complex buried pipeline environmental conditions. The main purpose is to identify potential methods that could be utilised in the design of new monitoring probes specific for the monitoring of cathodic shielding and corrosion of disbonded coatings in the pipeline industry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microcompression tests were performed to determine the mechanical behavior of nano-crystalline Cu/Fe and Fe/Cu multilayers, as well as monolithic Cu and Fe thin films. The results show that the micropillars of pure Cu thin film bulge out under large compressive strains without failure, while those of pure Fe thin film crack near the top at low compressive strains followed by shear failure. For Cu/Fe and Fe/Cu multilayers, the Cu layers accommodate the majority of plastic deformation, and the geometry constraints imposed by Fe layers exaggerates the bulging in the Cu layers. However, the existence of ductile Cu layers does not improve the overall ductility of Cu/Fe and Fe/Cu multilayers. Cracking in the Fe layers directly lead to the failure of the multilayer micropillars, although the Cu layers have very good ductility. The results imply that suppressing the cracking of brittle layers is more important than simply adding ductile layers for improving the overall ductility of metallic multilayers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microcompression tests were performed on monolithic Cu and Fe thin films and a Cu/Fe multilayer that had each individual layer of 200 nm thick, to understand the mechanical behaviour of multiple nanolayers. The micron-sized pillars were prepared by focused-ion beam (FIB) technique and compressed with a flat punch in a nanoindenter. The flow curves of the monolithic Cu and Fe thin films and Cu/Fe multilayer were extracted from the microcompression tests. The monolithic Cu thin film bulges in the top region of the pillar, while the Fe thin film cracks due to its columnar grain structure. For the Cu/Fe multilayer, the ductile Cu layers accommodate the majority of plastic deformation upon compression, while cracking in the Fe layers leads to the failure of the multilayer. Finite element models of microcompression tests were also developed to provide insights into the deformation behaviours of the multilayer and monolithic thin films. © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate the utilisation of an azomethine 1,3-dipolar cycloaddition reaction with carbon fibre to graft complex molecules onto the fibre surface. In an effort to enhance the interfacial interaction of the fibre to the matrix, the functionalised fibres possessed a pendant amine that is able to interact with epoxy resins. Functionalisation was supported by X-ray photoelectron spectroscopy and the grafting process had no detrimental effects on tensile strength compared with the control (untreated) fibres. Also, microscopic roughness (as determined by atomic force microscopy) and fibre topography were unchanged after the described treatment process. This methodology complements existing methodology aimed at enhancing the surface of carbon fibres for advanced material applications while not compromising the desirable strength profile. Single-fibre fragmentation tests show a statistically significant decrease in fragment length compared with the control fibres in addition to transverse cracking within the curing resin, both of which indicate an enhanced interaction between fibre and resin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An approach to achieving the ambitious goal of cost effectively extending the safe operation life of energy pipeline to 100 years is the application of health monitoring and life prediction tools that are able to provide both long-term remnant pipeline life prediction and in-situ pipeline condition monitoring. A critical step is the enhancement of technological capabilities that are required for understanding and quantifying the effects of key factors influencing buried steel pipeline corrosion and environmentally assisted materials degradation, and the development of condition monitoring technologies that are able to provide in-situ monitoring and site-specific warning of pipeline damage. This paper provides an overview of our current research aimed at developing new sensors and electrochemical cells for monitoring, categorising and quantifying the level and nature of external pipeline and coating damages under the combined effects of various inter-related variables and processes such as localised corrosion, coating cracking and disbondment, cathodic shielding, transit loss of cathodic protection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reliable testing methodologies for the assessment of protective coatings are critical for ensuring the integrity and durability of pipeline coatings (such as field joint coatings) and the mitigation of pipeline corrosion. Currently the failure of joint coatings is one of the major concerns in corrosion protection of pipelines, although they represent only approximately 5% of the coated area in a pipeline system. This paper presents an overview of major testing methodologies currently used in the pipeline industry for the selection, testing, and life prediction of coatings, in particular field joint coatings. Particular focus is on the discussion of difficulties and limitations in testing methods for assessing pipeline coating cracking, cathodic disbondment and loss of adhesion. It is shown that there are limitations in current methodologies in evaluating the coating flexibility - a key parameter for avoiding coatings cracking during hydrostatic testing, cyclic pressure operation and field bending. Methodologies for assessing the effect of holidays in coatings on the cathodic disbondment of pipeline coating under excessively negative cathodic protection (CP) voltages also require improvement. Furthermore, methods for understanding the effects of coating wet adhesion on pipeline coating, cracking and disbondment also need attention. Some preliminary results for addressing some of these issues are also presented in this paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An enhanced mandrel bend testing method has been proposed for the evaluation of the maximum strain level that could be tolerated by an organic coating, and for the understanding of localised coating deformation and cracking behaviours under nonuniform mechanical strains. The aim is to develop a practical method that is suitable for selecting pipeline coatings in order to ensure that the selected coatings have sufficient flexibility to meet the high strain demand during the construction, hydrostatic testing and operation of high pressure pipelines. Two new mandrel bend testing setups have been designed by employing either centre or end clamps in order to improve the uniformity of strain distributions over coated steel coupons, and by using strain gauges to perform in situ measurements of local strains. A series of tests have been carried out to evaluate the new method for testing the flexibility of selected epoxy based pipeline industry coatings. Preliminary computational simulation has also been carried out for assisting the interpretation of mandrel bending test results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the results of an investigation that studied the effects of admixed polypropylene (PP) fibres on the long-term drying shrinkage of hardened concrete. Five concrete mixtures, made with 100% Ordinary Portland Cement (OPC) as the binder and containing different volume fractions of PP fibre (0%, 0.05%, 0.1%, 0.2% and 0.5%) were tested. Also, three concrete mixtures were made with 65 % slag-blended cement binder incorporating 0% and 0.2% volume fraction of PP. The results show higher water loss and higher drying shrinkages in concretes that incorporate PP fibres than concrete without fibre. The results of early age cracking tendency of slag concrete, with and without fibre, under fully restrained and drying conditions, show that that PP fibre concrete had higher cracking tendency than concrete without fibre. Higher cracking tendency of PP fibre concrete was due to higher drying shrinkage and elastic moduli.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fe-C-Cr-Nb-B-Mo alloy powder and AISI 420 SS powder are deposited using laser cladding to increase the hardness for wear resistant applications. Mixtures from 0 to 100 wt.% were evaluated to understand the effect on the elemental composition, microstructure, phases, and microhardness. The mixture of carbon, boron and niobium in the Fe-C-Cr-Nb-B-Mo alloy powder introduces complex carbides into a Fe-based matrix of AISI 420 SS which increases its hardness. Hardness increased linearly with increasing Fe-C-Cr-Nb-B-Mo alloy, but substantial micro-cracking was observed in the clad layer at additions of 60 wt.% and above; related to a transition from a hypoeutectic alloy containing α-Fe/α' dendrites with an (Fe,Cr)2B and γ-Fe eutectic to primary and continuous carbo-borides M2B (where M represents Fe and Cr) and M23(B,C)6 carbides (where M represents Fe, Cr, Mo) with MC particles (where M represents Nb and Mo). The highest average hardness, for an alloy without micro-cracking, of 952 HV was observed in a 40 wt.% alloy. High stress abrasive scratch testing was conducted on all alloys at various loads (500, 1500, 2500 N). Alloy content was found to have a strong effect on the wear mode and the abrasive wear rate, and the presence of micro-cracks was detrimental to abrasive wear resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analysis of complex composite structures requires a fine contiguous mesh of threedimensional (3D) solid elements. The embedded element technique is a promising technique for predicting stiffness and stress. This paper presents a new method for enhancing the embedded element with continuum damage mechanics methods for predicting the evolution of damage in fiber reinforced composite structures. Comparison of the model prediction with experimental results reveals an excellent correlation between the tensile strength of quasi-isotropic laminate with an open hole. The embedded element technique allows the fiber reinforcement and matrix domains to be meshed independently and failure is evaluated separately in each domain. The enhanced embedded element approach allows the failure modes to be observed, specifically, the evolution of matrix cracking and fiber rupture. Compared to the traditional contiguous mesh finite element method, the present modelling technique demonstrates a clear advantage in predicting the experimentally observed failure modes and accurate characterisation of intralaminar fracture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymer-based materials are extensively used in various applications such as aircrafts, civilian structures, oil and gas platforms and electronics. They are, however, inherently damage prone and over time, the formation of cracks and microscopic damages influences the thermo-mechanical and electrical properties, which eventually results in the total failure of the materials. This paper provides an overview of the principal causes of cracking in polymer and composites and summarizes the recent progress in the development of non-destructive techniques in crack detection. Furthermore, recent progress in the development of bio-inspired self-healing methods in autonomic repair is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel experimental assembly consisting of a specially designed tensile testing rig and a standard electrochemical flat cell has been designed for simulating buried high pressure pipeline environmental conditions in which a coating gets damaged and degrades under mechanical strain, and for studying the influence of mechanically induced damages such as the cracking of a coating on its anti-corrosion property. The experimental assembly is also capable of applying a cathodic protection (CP) potential simultaneously with the mechanical strain and environmental exposure. The influence of applied mechanical strain as well as extended exposure to the corrosive environment, coupled with the application of CP, has been investigated based on changes in electrochemical impedance spectroscopy (EIS). Preliminary results show that the amplitude of the coating impedance decreases with an increase in the applied strain level and the length of environmental exposure. The EIS characteristics and changes are found to correlate well with variations in coating cracking and degradation features observed on post-test samples using both optical microscopy and scanning electron microscopy. These results demonstrate that this new experimental method can be used to simulate and examine coating behaviour under the effects of complex high pressure pipeline mechanical, electrochemical and environmental conditions.