93 resultados para contraction musculaire statique


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study was to compare surface electromyography (EMG) activation levels of selected neck muscles for two common neck-training modalities (Thera-Band and Cybex). Seventeen asymptomatic subjects (eight men and nine women) with a mean age 23.4 years were recruited. EMG activation normalized to maximal voluntary isometric contraction (MVIC) was measured with subjects performing exercises with green, blue, and black Thera-Bands and 50%, 70%, and 90% of 3RM for the Cybex modality. Four variables were used to depict exercise intensity: average and peak EMG activation in the concentric and eccentric phases. Significant differences (P <= 0.05) in EMG activation were evident when comparing intensities of the Cybex modality with each other and when comparing the Cybex intensities with Thera-Band intensities in most cases. Minimal differences were found among differing intensities of Thera-Band. Thera-Band exercise resulted in low-level EMG activation (range, flexion 3.8-15.7% MVIC; range, extension 20.2-34.8% MVIC); therefore, such exercise may be useful in rehabilitation programs. Cybex exercise (range, flexion 20.9-83.5% MVIC; range, extension 40.6-95.8% MVIC) may be useful for occupation-related injury prevention. However, exercise prescription should be undertaken with care as the mechanical loading on passive spinal structures is unknown.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The isolated Langendorff-mode perfused heart has become a valuable experimental model, used extensively to examine cardiac function, pathophysiology and pharmacology. For the clinical cardiologist an ECG is often a simple practicality, however in experimental circumstances, particularly with ex vivo murine hearts it is not always possible to obtain an ECG due to experimental recording constraints. However, the mechanical record of ventricular contractile function can be highly informative in relation to electrical state. It is difficult though to achieve consistency in these evaluations of arrhythmia as a validated common reference framework is lacking. In 1988, a group of investigators developed the ‘Lambeth Conventions’—a standardised reference for the definition and classification of arrhythmias in animal experimental models of ischaemia, infarction and reperfusion in vivo. Now, two decades later it is timely to revisit the Lambeth Conventions, and to update the guidelines in the context of the marked increase in murine heart study in experimental cardiac pathophysiology. Here we describe an adjunct to the Lambeth Conventions for the reporting of ventricular arrhythmias post-ischaemia in ex vivo mouse hearts when ECG recordings are not employed. Of seven discrete and identifiable patterns of mechanical dysrhythmia observed in reperfusion, five could be classified using conventional ECG terminology: ventricular premature beat, bigeminy, trigeminy, ventricular tachycardia and ventricular fibrillation. Two additional rhythm variations detected from the pressure record are described (potentiated contraction and alternans).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study was to determine whether nitric oxide synthase (NOS) inhibition decreased basal and exercise-induced skeletal muscle mitochondrial biogenesis. Male Sprague-Dawley rats were assigned to one of four treatment groups: NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME, ingested for 2 days in drinking water, 1 mg/ml) followed by acute exercise, no L-NAME ingestion and acute exercise, rest plus L-NAME, and rest without L-NAME. The exercised rats ran on a treadmill for 53 ± 2 min and were then killed 4 h later. NOS inhibition significantly (P < 0.05; main effect) decreased basal peroxisome proliferator-activated receptor-{gamma} coactivator 1beta (PGC-1beta) mRNA levels and tended (P = 0.08) to decrease mtTFA mRNA levels in the soleus, but not the extensor digitorum longus (EDL) muscle. This coincided with significantly reduced basal levels of cytochrome c oxidase (COX) I and COX IV mRNA, COX IV protein and COX enzyme activity following NOS inhibition in the soleus, but not the EDL muscle. NOS inhibition had no effect on citrate synthase or beta-hydroxyacyl CoA dehydrogenase activity, or cytochrome c protein abundance in the soleus or EDL. NOS inhibition did not reduce the exercise-induced increase in peroxisome proliferator-activated receptor-{gamma} coactivator 1{alpha} (PGC-1{alpha}) mRNA in the soleus or EDL. In conclusion, inhibition of NOS appears to decrease some aspects of the mitochondrial respiratory chain in the soleus under basal conditions, but does not attenuate exercise-induced mitochondrial biogenesis in the soleus or in the EDL.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is evidence that increasing carbohydrate (CHO) availability during exercise by raising preexercise muscle glycogen levels attenuates the activation of AMPK{alpha}2 during exercise in humans. Similarly, increasing glucose levels decreases AMPK{alpha}2 activity in rat skeletal muscle in vitro. We examined the effect of CHO ingestion on skeletal muscle AMPK signaling during exercise in nine active male subjects who completed two 120-min bouts of cycling exercise at 65 ± 1% VO2 peak. In a randomized, counterbalanced order, subjects ingested either an 8% CHO solution or a placebo solution during exercise. Compared with the placebo trial, CHO ingestion significantly (P < 0.05) increased plasma glucose levels and tracer-determined glucose disappearance. Exercise-induced increases in muscle-calculated free AMP (17.7- vs. 11.8-fold), muscle lactate (3.3- vs. 1.8-fold), and plasma epinephrine were reduced by CHO ingestion. However, the exercise-induced increases in skeletal muscle AMPK{alpha}2 activity, AMPK{alpha}2 Thr172 phosphorylation and acetyl-CoA Ser222 phosphorylation, were essentially identical in the two trials. These findings indicate that AMPK activation in skeletal muscle during exercise in humans is not sensitive to changes in plasma glucose levels in the normal range. Furthermore, the rise in plasma epinephrine levels in response to exercise was greatly suppressed by CHO ingestion without altering AMPK signaling, raising the possibility that epinephrine does not directly control AMPK activity during muscle contraction under these conditions in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We compared in human skeletal muscle the effect of absolute vs. relative exercise intensity on AMP-activated protein kinase (AMPK) signaling and substrate metabolism under normoxic and hypoxic conditions. Eight untrained males cycled for 30 min under hypoxic conditions (11.5% O2, 111 ± 12 W, 72 ± 3% hypoxia VO2 peak; 72% Hypoxia) or under normoxic conditions (20.9% O2) matched to the same absolute (111 ± 12 W, 51 ± 1% normoxia VO2 peak; 51% Normoxia) or relative (to VO2 peak) intensity (171 ± 18 W, 73 ± 1% normoxia VO2 peak; 73% Normoxia). Increases (P < 0.05) in AMPK activity, AMPK{alpha} Thr172 phosphorylation, ACCbeta Ser221 phosphorylation, free AMP content, and glucose clearance were more influenced by the absolute than by the relative exercise intensity, being greatest in 73% Normoxia with no difference between 51% Normoxia and 72% Hypoxia. In contrast to this, increases in muscle glycogen use, muscle lactate content, and plasma catecholamine concentration were more influenced by the relative than by the absolute exercise intensity, being similar in 72% Hypoxia and 73% Normoxia, with both trials higher than in 51% Normoxia. In conclusion, increases in muscle AMPK signaling, free AMP content, and glucose disposal during exercise are largely determined by the absolute exercise intensity, whereas increases in plasma catecholamine levels, muscle glycogen use, and muscle lactate levels are more closely associated with the relative exercise intensity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitric oxide synthase (NOS) inhibition has been shown in humans to attenuate exercise-induced increases in muscle glucose uptake. We examined the effect of infusing the NO precursor L-arginine (L-Arg) on glucose kinetics during exercise in humans. Nine endurance-trained males cycled for 120 min at 72 ± 1% VO2 peak followed immediately by a 15-min "all-out" cycling performance bout. A [6,6-2H]glucose tracer was infused throughout exercise, and either saline alone (Control, CON) or saline containing L-Arg HCl (L-Arg, 30 g at 0.5 g/min) was coinfused in a double-blind, randomized order during the last 60 min of exercise. L-Arg augmented the increases in glucose rate of appearance, glucose rate of disappearance, and glucose clearance rate (L-Arg: 16.1 ± 1.8 ml·min–1·kg–1; CON: 11.9 ± 0.7 ml·min–1·kg–1 at 120 min, P < 0.05) during exercise, with a net effect of reducing plasma glucose concentration during exercise. L-Arg infusion had no significant effect on plasma insulin concentration but attenuated the increase in nonesterified fatty acid and glycerol concentrations during exercise. L-Arg infusion had no effect on cycling exercise performance. In conclusion, L-Arg infusion during exercise significantly increases skeletal muscle glucose clearance in humans. Because plasma insulin concentration was unaffected by L-Arg infusion, greater NO production may have been responsible for this effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calcineurin activation ameliorates the dystrophic pathology of hindlimb muscles in mdx mice and decreases their susceptibility to contraction damage. In mdx mice, the diaphragm is more severely affected than hindlimb muscles and more representative of Duchenne muscular dystrophy. The constitutively active calcineurin A transgene (CnA) was overexpressed in skeletal muscles of mdx (mdx CnA*) mice to test whether muscle morphology and function would be improved. Contractile function of diaphragm strips and extensor digitorum longus and soleus muscles from adult mdx CnA* and mdx mice was examined in vitro. Hindlimb muscles from mdx CnA* mice had a prolonged twitch time course and were more resistant to fatigue. Because of a slower phenotype and a decrease in fiber cross-sectional area, normalized force was lower in fast- and slow-twitch muscles of mdx CnA* than mdx mice. In the diaphragm, despite a slower phenotype and a 35% reduction in fiber size, normalized force was preserved. This was likely mediated by the reduction in the area of the diaphragm undergoing degeneration (i.e., mononuclear cell and connective and adipose tissue infiltration). The proportion of centrally nucleated fibers was reduced in mdx CnA* compared with mdx mice, indicative of improved myofiber viability. In hindlimb muscles of mdx mice, calcineurin activation increased expression of markers of regeneration, particularly developmental myosin heavy chain isoform and myocyte enhancer factor 2A. Thus activation of the calcineurin signal transduction pathway has potential to ameliorate the mdx pathophysiology, especially in the diaphragm, through its effects on muscle degeneration and regeneration and endurance capacity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aging is associated with a slowing of skeletal muscle contractile properties, including a decreased rate of relaxation. In rats, the age-related decrease in the maximal rate of relaxation is reversed after 4-wk administration with the β2-adrenoceptor agonist (β2-agonist) fenoterol. Given the critical role of the sarcoplasmic reticulum (SR) in regulating intracellular Ca2+ transients and ultimately the time course of muscle contraction and relaxation, we tested the hypothesis that the mechanisms of action of fenoterol are mediated by alterations in SR proteins. Sarcoendoplasmic reticulum Ca2+-ATPase (SERCA) kinetic properties were assessed in muscle homogenates and enriched SR membranes isolated from the red (RG) and white (WG) portions of the gastrocnemius muscle in adult (16 mo) and aged (28 mo) F344 rats that had been administered fenoterol for 4 wk (1.4 mg/kg/day ip, in saline) or vehicle only. Aging was associated with a 29% decrease in the maximal activity (Vmax) of SERCA in the RG but not in the WG muscles. Fenoterol treatment increased the Vmax of SERCA and SERCA1 protein levels in RG and WG. In the RG, fenoterol administration reversed an age-related selective nitration of the SERCA2a isoform. Our findings demonstrate that the mechanisms underlying age-related changes in contractile properties are fiber type dependent, whereas the effects of fenoterol administration are independent of age and fiber type.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitric oxide (NO) has been implicated as an important signaling molecule in the insulin-independent, contraction-mediated glucose uptake pathway and may represent a novel strategy for blood glucose control in patients with type 2 diabetes (T2DM). The current study sought to determine whether the NO donor, sodium nitroprusside (SNP) increases glucose uptake in primary human skeletal muscle cells (HSkMC) derived from both healthy individuals and patients with T2DM. Vastus lateralis muscle cell cultures were derived from seven males with T2DM (aged 54 ± 2 years, BMI 31.7 ± 1.2 kg/m2, fasting plasma glucose 9.52 ± 0.80 mmol/L) and eight healthy individuals (aged 46 ± 2 years, BMI 27.1 ± 1.5 kg/m2, fasting plasma glucose 4.69 ± 0.12 mmol/L). Cultures were treated with both therapeutic (0.2 and 2 μM) and supratherapeutic (3, 10 and 30 mM) concentrations of SNP. An additional NO donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP) was also examined at a concentration of 50 μM. Glucose uptake was significantly increased following both 30 and 60 min incubations with the supratherapeutic SNP treatments (P = 0.03) but not the therapeutic SNP doses (P = 0.60) or SNAP (P = 0.54). There was no difference in the response between the healthy and T2DM cell lines with any treatment or dose. The current study demonstrates that glucose uptake is elevated by supratherapeutic, but not therapeutic doses of SNP in human primary skeletal muscle cells derived from both healthy volunteers and patients with T2D. These data confirm that nitric oxide donors have potential therapeutic utility to increase glucose uptake in humans, but that SNP only achieves this in supratherapeutic doses. Further study to delineate mechanisms and the therapeutic window is warranted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study was to examine the reliability of normalisation methods used in the study of the posterior and posterolateral neck muscles in a group of healthy controls. Six asymptomatic male subjects performed a total of 12 maximum voluntary isometric contractions (MVIC) and 60%-submaximal isometric contractions (60%-MVIC) against the torque arm of an isokinetic dynamometer whilst surface and intramuscular electromyography (EMG) was recorded unilaterally from representative posterior and posterolateral locations. Reliability was calculated using intra-class correlation coefficient (ICC), relative standard error of measurement (%SEM) and relative coefficient of variation (%CV). Maximal torque output was found to be highly reliable in the directions of extension and right lateral bending when the first of three MVIC contractions was excluded. When averaged across contraction direction, high reliability was found for both surface (MVIC: ICC = 0.986, %SEM = 7.5, %CV = 9.2; 60%-MVIC: ICC = 0.975, %SEM = 10, %CV = 13.7) and intramuscular (MVIC: ICC = 0.910, %SEM = 20, %CV = 19.1; 60%-MVIC: ICC = 0.952, %SEM = 16.5, %CV = 13.5) electrodes. Intramuscular electrodes displayed the least reliability in right lateral bending. The use of visual feedback markedly increased the reliability of 60%-MVIC contractions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Neck injuries are common in high performance combat pilots and have been attributed to high gravitational forces and the non-neutral head postures adopted during aerial combat maneuvers. There is still little known about the pathomechanics of these injuries.

Methods: Six Royal Australian Air Force Hawk pilots flew a sortie that included combinations of three +Gz levels (1, 3, and 5) and four head postures (Neutral, Turn, Extension, and Check-6). Surface electromyography from neck and shoulder muscles was recorded in flight. Three-dimensional measures of head postures adopted in flight were estimated postflight with respect to end-range of the cervical spine using an electromagnetic tracking device.

Results: Mean muscle activation increased significantly with both increasing +Gz and non-neutral head postures. Check-6 at +5 Gz (mean activation of all muscles = 51% MVIC) elicited significantly greater muscle activation in most muscles when compared with Neutral, Extension, and Turn head postures. High levels of muscle co-contraction were evident in high acceleration and non-neutral head postures. Head kinematics showed Check-6 was closest to end-range in any movement plane (86% ROM in rotation) and produced the greatest magnitude of rotation in other planes. Turn and Extension showed a large magnitude of rotation with reference to end-range in the primary plane of motion but displayed smaller rotations in other planes.

Discussion:
High levels of neck muscle activation and co-contraction due to high +Gz and head postures close to end range were evident in this study, suggesting the major influence of these factors on the pathomechanics of neck injuries in high performance combat pilots.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acceptable reliability of normalisation contractions in electromyography (EMG) is paramount for testing conducted over a number of days or if normal laboratory strength testing equipment is unavailable. This study examined the reliability of maximal voluntary isometric contractions (MVIC) and sub-maximal (60%) isometric contractions for use in neck muscle EMG studies. Surface EMG was recorded bilaterally from eight sites around the neck at C4/5 level from five healthy male subjects. Subjects performed MVIC and sub-maximal normalisation contractions using an isokinetic dynamometer (ID) and a portable cable dynamometer with attached strain gauge (PCD) in addition to a MVIC against a manual resistance (MR). Subjects were tested in flexion, extension, left and right lateral bending and were retested by the same tester within a two-week period. Intra class correlation co-efficients (ICC) were calculated for each testing method and contraction direction and a mean ICC was calculated across all contraction directions. All normalisation methods produced excellent within-day reliability (mean ICC >0.80) but only the MVICs using the ID and PCD had acceptable reliability when assessed between-days. This study confirmed the validity of using MVICs elicited using the ID and PCD as reliable reference contractions for the normalisation of neck EMG.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pre- and early puberty seem to be the most opportune times for exercise to  improve bone strength in girls, but few studies have addressed this issue in boys. This study investigated the site-, surface-, and maturity-specific exercise-induced changes in bone mass and geometry in young boys. The osteogenic effects of loading were analyzed by comparing the playing and nonplaying humeri of 43 male pre-, peri-, and postpubertal competitive tennis players 10-19 yr of age. Total bone area, medullary area, and cortical area were determined at the mid (40-50%) and distal humerus (60-70%) of both arms using MRI. Humeral bone mass (BMC) was derived from a whole body DXA scan. In prepubertal boys, BMC was 17% greater in the playing compared with nonplaying arm (p < 0.001), which was accompanied by a 12-21% greater cortical area, because of greater periosteal expansion than medullary expansion at the midhumerus and periosteal expansion associated with medullary contraction at the distal humerus. Compared with prepuberty, the side-to-side differences in BMC (27%) and cortical area (20-33%) were greater in peripuberty (p < 0.01). No differences were found between peri- and postpuberty despite longer playing history in the postpubertal players.The osteogenic response to loading was greater in peri- compared with prepubertal boys, which is in contrast with our previous findings in girls and may be caused by differences in training history. This suggests that the window of opportunity to improve bone mass and size through exercise may be longer in boys than in girls.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exercise during growth may increase peak bone mass; if the benefits are maintained it may reduce the risk of fracture later in life (1). It is hypothesised that exercise will preferentially enhance bone formation on the surface of cortical bone that is undergoing bone modeling at the time (2). Therefore, exercise may increase bone mass accrual on the outer periosteal surface during the pre- and peri-pubertal years, and on the inner endocortical surface during puberty (3). An increase in bone formation on the periosteal surface is, however, more effective for increasing bone strength than medullary contraction (4). While exercise may have a role in osteoporosis prevention, there is little evidential basis to support this notion. It is generally accepted that weight-bearing exercise is important, but it is not known how much, how often, what magnitude or how long children need to exercise before a clinically important increase in bone density is obtained. In this thesis, the effect of exercise on the growing skeleton is investigated in two projects. The first quantifies the magnitude and number of loads associated with and in a moderate and low impact exercise program and non-structured play. The second project examines how exercise affects bone size and shape during different stages of growth. Study One: The Assessment of the Magnitude of Exercise Loading and the Skeletal Response in Girls Questions: 1) Does moderate impact exercise lead to a greater increase in BMC than low impact exercise? 2) Does loading history influence the osteogenic response to moderate impact exercise? 3) What is the magnitude and number of loads that are associated with a moderate and low impact exercise program? Methods: Sixty-eight pre-and early-pubertal girls (aged 8.9±0.2 years) were randomised to either a moderate or low impact exercise regime for 8.5-months. In each exercise group the girls received either calcium fortified (-2000 mg/week) or non-fortified foods for the duration of the study. The magnitude and number of loads associated with the exercise programs and non-structured play were assessed using a Pedar in-sole mobile system and video footage, respectively. Findings: After adjusting for baseline BMC, change in length and calcium intake, the girls in the moderate exercise intervention showed greater increases in BMC at the tibia (2.7%) and total body (1.3%) (p ≤0.05). Girl's who participated in moderate impact sports outside of school, showed greater gains in BMC in response to the moderate impact exercise program compared to the low impact exercise program (2.5 to 4.5%, p ≤0.06 to 0.01). The moderate exercise program included -400 impacts per class, that were applied in a dynamic manner and the magnitude of impact was up to 4 times body weight. Conclusion: Moderate-impact exercise may be sufficient to enhance BMC accrual during the pre-pubertal years. However, loading history is likely to influence the osteogenic response to additional moderate impact exercise. These findings contribute towards the development of school-based exercise programs aimed at improving bone health of children. Study Two: Exercise Effect on Cortical Bone Morphology During Different Stages of Maturation in Tennis Players Questions: 1) How does exercise affect bone mass (BMC) bone geometry and bone strength during different stages of growth? 2) Is there an optimal stage during growth when exercise has the greatest affect on bone strength? Methods: MRI was used to measure average total bone, cortical and medullary areas at the mid- and distal-regions of the playing and non-playing humerii in 47 pre-, peri- and post-pubertal competitive female tennis players aged 8 to 17 years. To assess bone rigidity, each image was imported into Scion Image 4.0.2 and the maximum, minimum and polar second moments of area were calculated using a custom macro. DXA was used to measure BMC of the whole humerus. Longitudinal data was collected on 37 of the original cohort. Findings: Analysis of the entire cohort showed that exercise was associated with increased BMC and cortical area (8 to 14%), and bone rigidity (11 to 23%) (all p ≤0.05). The increase in cortical bone area was associated with periosteal expansion in the pre-pubertal years and endocortical contraction in the post-pubertal years (p ≤0.05). The exercise-related gains in bone mass that were accrued at the periosteum during the pre-pubertal years, did not increase with advanced maturation and/or additional training. Conclusion: Exercise increased cortical BMC by enhancing bone formation on the periosteal surface during the pre-pubertal years and on the endocortical surface in the post-pubertal years. However, bone strength only increased in response to bone acquisition on the periosteal surface. Therefore the pre-pubertal years appear to be the most opportune time for exercise to enhance BMC accrual and bone strength

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Regular physical activity improves insulin action and is an effective therapy for the treatment and prevention of type 2 diabetes. However, little is known of the mechanisms by which exercise improves insulin action in muscle. These studies investigate the actions of a single bout of exercise and short-term endurance training on insulin signalling. Twenty-four hours following the completion of a single bout of endurance exercise insulin action improved, although greater enhancement of insulin action was demonstrated following the completion of endurance training, implying that cumulative bouts of exercise substantially increase insulin action above that seen from the residual effects of an acute bout of prior exercise. No alteration in the abundance and phosphorylation of proximal members of the insulin-signalling cascade in skeletal muscle, including the insulin receptor and IRS-1 were found. A major finding however, was the significant increase in the serine phosphorylation of a known downstream signalling protein, Akt (1.5 fold, p ≤0.05) following an acute bout of exercise and exercise training. This was matched by the observed increase in protein abundance of SHPTP2 (1.6 fold, p ≤0.05) a protein tyrosine phosphatase, in the cytosolic fraction of skeletal muscle following endurance exercise. These data suggest a small positive role for SHPTP2 on insulin stimulated glucose transport consistent with transgenic mice models. Further studies were aimed at examining the gene expression following a single bout of either resistance or endurance exercise. There were significant transient increases in IRS-2 mRNA concentration in the few hours following a single bout of both endurance and resistance exercise. IRS-2 protein abundance was also observed to significantly increase 24-hours following a single bout of endurance exercise indicating transcriptional regulation of IRS-2 following muscular contraction. One final component of this PhD project was to examine a second novel insulin-signalling pathway via c-Cbl tyrosine phosphorylation that has recently been shown to be essential for insulin stimulated glucose uptake in adipocytes. No evidence was found for the tyrosine phosphorylation of c-Cbl in the skeletal muscle of Zucker rats despite demonstrating significant phosphorylation of the insulin receptor and Akt by insulin treatment and successfully immunoprecipitating c-Cbl protein. Surprisingly, there was a small but significant increase in c-Cbl protein expression following insulin-stimulation, however c-Cbl tyrosine phosphorylation does not appear to be associated with insulin or exercise-mediated glucose transport in skeletal muscle.