60 resultados para apoptosis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims/hypothesis

Aggregation of human islet amyloid polypeptide (hIAPP) as islet amyloid is associated with increased beta cell apoptosis and reduced beta cell mass in type 2 diabetes. Islet amyloid formation induces oxidative stress, which contributes to beta cell apoptosis. The cJUN N-terminal kinase (JNK) pathway is a critical mediator of beta cell apoptosis in response to stress stimuli including oxidative stress and exogenous application of hIAPP. We determined whether amyloid formation by endogenous hIAPP mediates beta cell apoptosis through JNK activation and downstream signalling pathways.
Methods

hIAPP transgenic and non-transgenic mouse islets were cultured for up to 144 h in 16.7 mmol/l glucose to induce islet amyloid in the presence or absence of the amyloid inhibitor Congo Red or a cell-permeable JNK inhibitor. Amyloid, beta cell apoptosis, JNK signalling and activation of downstream targets in the intrinsic and extrinsic apoptotic pathways were measured.
Results

JNK activation occurred with islet amyloid formation in hIAPP transgenic islets after 48 and 144 h in culture. Neither high glucose nor the hIAPP transgene alone was sufficient to activate JNK independent of islet amyloid. Inhibition of islet amyloid formation with Congo Red reduced beta cell apoptosis and partially decreased JNK activation. JNK inhibitor treatment reduced beta cell apoptosis without affecting islet amyloid. Islet amyloid increased mRNA levels of markers of the extrinsic (Fas, Fadd) and intrinsic (Bim [also known as Bcl2l11]) apoptotic pathways, caspase 3 and the anti-apoptotic molecule Bclxl (also known as Bcl2l1) in a JNK-dependent manner.
Conclusions/interpretation

Islet amyloid formation induces JNK activation, which upregulates predominantly pro-apoptotic signals in both extrinsic and intrinsic pathways, resulting in beta cell apoptosis.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background : There is an increased incidence of major depressive disorder (MDD) in individuals after myocardial infarction (MI), but the pathophysiological processes mediating this association are unclear. Our previous study demonstrated an increase in pro-apoptotic pathways in the myocardium and hippocampus in MDD, which was reversed by venlafaxine. This study aimed to attempt to confirm the effects of apoptosis vulnerability markers on the myocardium in a model of depression after myocardial infarction.

Methods :
Rats were divided into four groups: sham (N = 8), depression (N = 8, chronic mild unpredictable stress and separation were used in the depression group), MI (N = 13) and post-MI depression (N = 7). The rats in all four groups underwent the same open field and sucrose preference behavioral tests. Evan Blue staining was used to determine the area at risk of myocardial infarction in the left ventricle, and 2,3,5-triphenyl tetrazolium chloride (1.5% TTC) dye was used to detect the size of the myocardial infarction. The expression of bax and bcl-2 protein in the myocardium was investigated by immunohistochemistry, and the mRNA expression of bax, bcl-2 and caspase-3 in the myocardium was investigated by real time RT-PCR. Apoptosis was estimated in the myocardium by measuring the Bax:Bcl-2 ratio.

Results :
In the depression and post-MI depression rats, there were significantly decreased movements and total sucrose consumption, modeling behavioral deficits and an anhedonic-like state. In terms of myocardial infarction size, no difference was seen between the MI and post-MI depression groups. There was an up-regulated Bax:Bcl-2 ratio in the depression, MI and post-MI depression groups. Furthermore, in the latter group, there was a greater up-regulated Bax:Bcl-2 ratio. However, caspase-3 did not differ among the four groups.

Conclusions :
These results of this animal model suggest that active pro-apoptotic pathways may be involved in the nexus between myocardial infarction and depression. This mechanism may be germane to understanding this relationship in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lactoferrin (Lf), an iron binding ~80 kDa glycoprotein is a well characterized multifunctional protein found to be present in mammalian milk and in most exocrine secretions. Besides Lf’s important physiological roles in the process of iron homeostasis, iron transportation and sequestration, it is well known for its properties such as anti-microbial, antiviral anti-inflammatory and immunomodulatory functions. In the recent decade, Lf has gained significant attention for its future potential use as a safer natural food (bovine milk) derived anti-cancer therapeutic. With regards to Lf’s chemopreventive effects in targeting carcinogenesis, both animal and human studies have widely reported its immunomodulatory properties to play a significant role. The deregulation of apoptosis (programmed cell death) mechanisms has not only major implications for the development of uncontrolled tumour growth but evasion of apoptosis is also an important factor affecting drug resistance and radioresistance in cancer. With the exception of few studies, the molecular basis by Lf treatment remains unclear. In this review, by addressing the main features of Lf’s structure and function we discuss the recent developments in delineating the therapeutic mechanisms of Lf and its effects on the proteins and receptors modulating apoptosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Membrane-presented CD40 agonists can induce apoptosis in carcinoma, but not normal homologous epithelial cells, whereas soluble agonists are growth inhibitory but not proapoptotic unless protein synthesis is blocked. Here we demonstrate that membrane-presented CD40 ligand (CD154) (mCD40L), but not soluble agonists, triggers cell death in malignant human urothelial cells via a direct mechanism involving rapid upregulation of TNFR-associated factor (TRAF)3 protein, without concomitant upregulation of TRAF3 mRNA, followed by activation of the c-Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) pathway and induction of the caspase-9/caspase-3-associated intrinsic apoptotic machinery. TRAF3 knockdown abrogated JNK/AP-1 activation and prevented CD40-mediated apoptosis, whereas restoration of CD40 expression in CD40-negative carcinoma cells restored apoptotic susceptibility via the TRAF3/AP-1-dependent mechanism. In normal human urothelial cells, mCD40L did not trigger apoptosis, but induced rapid downregulation of TRAF2 and 3, thereby paralleling the situation in B-lymphocytes. Thus, TRAF3 stabilization, JNK activation and caspase-9 induction define a novel pathway of CD40-mediated apoptosis in carcinoma cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chansu is one of the most widely used traditional Chinese medicines in China, Japan, and other Southeast Asian countries primarily for antipain, anti-inflammation, and recently anticancer. Over 10 recipes and remedies contained Chansu, which are easily available in pharmacies and hospitals, but the mechanisms of action were not clearly articulated. In the present study, Cinobufagin (CBF), the major compound of Chansu, was employed as a surrogate marker to determine its ability in inducing cancer cell death. As expected, CBF has significant cancer-killing capacity for a range of cancers, but such ability differs markedly. Colon and prostate cancers are more sensitive than skin and lung cancers. Interestingly, cancer cells die through apoptotic pathway either being biphasic caspase- 3-dependent (HCT116) or independent (HT29). Multipathway analysis reveals that CBF-induced apoptosis is likely modulated by the hypoxia-inducing factor-1 alpha subunit (HIF-1