68 resultados para aluminum tube


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The defoThe deformation behaviors and energy absorption characteristics of constructed cellular aluminums were investigated by compressive tests. Constructed cellular aluminum specimens with two kinds of thickness in the cold-pressed panel and various numbers of layers bonded together have been tested. The plateau stress and the energy absorption have been measured and furthermore, the deformation behaviors have been evaluated. Results indicate that superior mechanical properties with constructed cellular aluminums can be achieved when the distribution of material at cell level is properly selected. Excellent energy absorption per unit mass can be obtained by only changing the thickness of the original aluminum sheet.nnation behaviors and energy absorption characteristics of constructed cellular aluminums were investigated by compressive tests. Constructed cellular aluminum specimens with two kinds of thickness in the cold-pressed panel and various numbers of layers bonded together have been tested. The plateau stress and the energy absorption have been measured and furthennore, the defonnation behaviors have been evaluated. Results indicate that superior mechanical properties with constructed cellular aluminums can be achieved when the distribution of material at cell level is properly selected. Excellent energy absorption per unit mass can be obtained by only changing the thickness of the original aluminum sheet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous materials are now becoming attractive to researchers interested in both scientific and industrial applications due to their unique combinations of physical, mechanical, thermal, electrical and acoustic properties in conjunction with excellent energy absorption characteristics. Metallic foams allow efficient conversion of impact energy into deformation work, which has led to increasing applications in energy absorption devices. In particular, foams made of aluminum and its alloys are of special interest because they can be used as lightweight panels, for energy absorption in crash situations and sound or heat absorbing functions in the automotive industry with the aim to reduce weight to improve crashworthiness, safety and comfort.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hollow structures made of Advanced High Strength Steel (AHSS) are increasingly used in the automobile industry for crash and structural components. Generally high pressure hydroforming is used to form these tabular parts, which is a costly manufacturing process due to the high pressure equipment and large tonnage presses required. A new process termed low pressure hydroforming, where a pressurized tube is crushed between two dies, represents a more cost effective alternative due to the lower pressures and die closing forces required.

In this study the low pressure tube hydroforming of one simple and two different complex hollow shapes is investigated. The complexities of the pat1S compared to simple shapes are critically studied and the die filling conditions are investigated and discussed. FUl1hennore the thickness distributions over the circumference of the part during forming are analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advanced high strength steels (AHSS), in particular, are an attractive group materials, offering higher strength for improved energy absorption and the opportunity to reduce weight through the use of thinner gauges. High pressure tube hydroforming (HPTH) has been used to produce safety components for these steels, but it is expensive. Low pressure tube hydroforming (LPTH) is a lower cost alternative to form the safety components in the car. The side intrusion beam is the second most critical part after front rail in the car structure for passenger safety during crash. The forming as well as crash behaviour of a square side intrusion beam from both processes was investigated using numerical simulation. This paper investigated the interaction between the forming and crash response of these materials in order to evaluate their potential for use in vehicle design for crashworthiness. The energy absorption characteristics of the different tubes were calculated and the results from the numerical analyses compared for both hydroforming process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The so-called scroll shoulder tool is widely used particularly for thick section friction stir welding (FSW). However, the correlation between its shoulder flow zone weld quality and material flow quantity remains unclear. This information is important for tool design. In the present study, a scroll shoulder tool was used to FSW 20mm thick 6061 aluminum (Al) plates at a range of welding parameters. The pick-up material (PUM) by the scroll was quantified, and the effect of welding parameters and PUM on the shoulder flow zone formation and weld quality was studied. It was found that there is a positive linear relationship between the PUM and weld quality. In order to obtain a defect-free FSW weld produced by the scroll shoulder tool, scroll groove needs to be fully filled by PUM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scroll shoulder tools are widely used and they do not need to be tilted during friction stir welding (FSW). However, the detailed material flow, which is important for proper scroll shoulder tool design and subsequently for forming the defect-free shoulder flow zone, has not been fully explained. In the present study, features of material flow in shoulder flow zone, during FSW of thick 6061 aluminium (Al) plates using a scroll shoulder tool were investigated. It was observed that there is a simple layer-to-layer banded structure which appears in the bottom portion of shoulder flow zone, but disappears in the top portion of this weld zone. When the scroll shoulder tool is plunged into the workpiece to a determined depth, the workpiece material is extruded by the tool pin, and pushed up into the scroll groove beneath the shoulder forming the pick-up material. During the forward movement of the tool, the central portion of pick-up material was driven downward by the root portion of pin and then it detaches from the tip portion of pin in a layer-to-layer manner to form the weld.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sperm cells have been isolated from pollen tubes growing in style segments of the dicotlyledon Rhododendron macgregoriae and the monocotyledon Gladiolus gandavensis by the in vivo/in vitro method at various stages of fertilization. Pollen tubes emerged from the cut end of the style into agar medium, and more than 95% contained sperm cells. Sperm cells were released from the pollen tubes by osmotic shock or by placing styles in wall-degrading enzymes: 0.5% macerozyme and 1% cellulase. The isolated sperms were ellipsoidal protoplasts of diameter about 2 × 3 micrometers in Gladiolus and about 3 × 4 micrometers in Rhododendron. After isolation, a proportion of the sperm cells occurred in pairs linked at one end by finger-like connections. The pairs of isolated sperms were dimorphic in terms of surface area and volume. By cutting the styles at various positions and times after pollination, the potential exists to detect changes in sperm gene expression associated with fertilization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present investigation is on the microstructure evolution and hardness of powder metallurgically processed Al- 0.5 wt.%Mg base 10 wt.% short steel fiber reinforced composites. The 0.38 wt.% C short steel fibers of average diameter 50µm and 500-800µm length were nitrided and chromized in a fluid bed furnace. Nitriding was carried out at 525°C for 90, 30 and 5 min durations. Chromizing was performed at 950°C for 53 and 7 min durations, using thermal reactive deposition (TRD) and diffusion technique. The treated fibers and resulting reaction interfaces were characterized using metallographic, microhardness and XRD techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the magneto-hydrodynamic forces generated due to the external magnetic field and current density distribution within the cell (current in cell linings) is important in the optimization of cell dynamics. It is well documented that these factors play a crucial role in establishing the metal-pad stability of the cell. Conventional cells use the cathode-collector-bar assembly to carry the current through molten aluminium, the cathode and the steel collector-bar to nearest external bus. The electrical conductivity of the steel is so poor relative to the molten aluminium that the outer third of the collector bar carries the maximum load, which in turn increases the horizontal components of the current within the cell. Previous studies have modelled improvement in the cell instability through external magnetic compensation by redistributing current in the cathode busbar. Very little to date has been published on work to improve the current distribution within the cell. In this work, the current distribution in an aluminium electrolysis cell with copper collector-bar was predicted using finite element modelling. A 2D cross-section of a commercial cell was used under steady conditions of electrical fields in anode, electrolyte, molten aluminium and copper cathode-assembly. Different shapes and sizes of the cathode assembly are also considered to optimise the distribution of current throughout the cathode lining. The findings indicated that the copper-bar of similar size to steel could save voltage up to 150 mV. There is a reduction of more than 70% in peak current density value due to the copper inserts. The predicted trends of current distribution show a good agreement with previously published data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent growth in broadband access and proliferation of small personal devices that capture images and videos has led to explosive growth of multimedia content available everywhereVfrom personal disks to the Web. While digital media capture and upload has become nearly universal with newer device technology, there is still a need for better tools and technologies to search large collections of multimedia data and to find and deliver the right content to a user according to her current needs and preferences. A renewed focus on the subjective dimension in the multimedia lifecycle, fromcreation, distribution, to delivery and consumption, is required to address this need beyond what is feasible today. Integration of the subjective aspects of the media itselfVits affective, perceptual, and physiological potential (both intended and achieved), together with those of the users themselves will allow for personalizing the content access, beyond today’s facility. This integration, transforming the traditional multimedia information retrieval (MIR) indexes to more effectively answer specific user needs, will allow a richer degree of personalization predicated on user intention and mode of interaction, relationship to the producer, content of the media, and their history and lifestyle. In this paper, we identify the challenges in achieving this integration, current approaches to interpreting content creation processes, to user modelling and profiling, and to personalized content selection, and we detail future directions. The structure of the paper is as follows: In Section I, we introduce the problem and present some definitions. In Section II, we present a review of the aspects of personalized content and current approaches for the same. Section III discusses the problem of obtaining metadata that is required for personalized media creation and present eMediate as a case study of an integrated media capture environment. Section IV presents the MAGIC system as a case study of capturing effective descriptive data and putting users first in distributed learning delivery. The aspects of modelling the user are presented as a case study in using user’s personality as a way to personalize summaries in Section V. Finally, Section VI concludes the paper with a discussion on the emerging challenges and the open problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An array of pine-shaped nanostructures of aluminum nitride (AlN) was synthesized through direct reaction between Al vapor and nitrogen gas in direct current (DC) arc discharge plasma without any catalyst or template. The as-prepared nanostructure consists of many pine-needle-shaped leaves with conical shape tips. The structure, morphology, and optical property of the nanostructure have been characterized by X-ray powder diffraction, energy-dispersive X-ray spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, Raman spectroscopy, and photoluminescence. A possible growth mechanism of the pine-shaped nanostructure was discussed. Two factors were found to be essential for branched nanostructure growth, i.e., the reaction time and N2 pressure. The photoluminescence spectrum of the nanostructure of AlN revealed an intense emission band, suggesting that there may be potential applications in electronic and optoelectronic nanodevices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aqueous corrosion behavior of low-alloy steel with aluminum contents was examined in a 10 wt% H2SO4 (pH 0.13) solution using electrochemical techniques and surface analyses. The corrosion resistance of the new alloy steel was evaluated in terms of electrochemical parameters, such as passive current density, film, and charge transfer resistances. The results showed that a high Al content in the steel imparted better passivation behavior resulting in a lower corrosion rate. It related to the enrichment of iron carbonate and hydrocarbon by the dissolution of the carbide phase.