49 resultados para Weakly Supervised Learning


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Healthcare plays an important role in promoting the general health and well-being of people around the world. The difficulty in healthcare data classification arises from the uncertainty and the high-dimensional nature of the medical data collected. This paper proposes an integration of fuzzy standard additive model (SAM) with genetic algorithm (GA), called GSAM, to deal with uncertainty and computational challenges. GSAM learning process comprises three continual steps: rule initialization by unsupervised learning using the adaptive vector quantization clustering, evolutionary rule optimization by GA and parameter tuning by the gradient descent supervised learning. Wavelet transformation is employed to extract discriminative features for high-dimensional datasets. GSAM becomes highly capable when deployed with small number of wavelet features as its computational burden is remarkably reduced. The proposed method is evaluated using two frequently-used medical datasets: the Wisconsin breast cancer and Cleveland heart disease from the UCI Repository for machine learning. Experiments are organized with a five-fold cross validation and performance of classification techniques are measured by a number of important metrics: accuracy, F-measure, mutual information and area under the receiver operating characteristic curve. Results demonstrate the superiority of the GSAM compared to other machine learning methods including probabilistic neural network, support vector machine, fuzzy ARTMAP, and adaptive neuro-fuzzy inference system. The proposed approach is thus helpful as a decision support system for medical practitioners in the healthcare practice.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper proposes a combination of fuzzy standard additive model (SAM) with wavelet features for medical diagnosis. Wavelet transformation is used to reduce the dimension of high-dimensional datasets. This helps to improve the convergence speed of supervised learning process of the fuzzy SAM, which has a heavy computational burden in high-dimensional data. Fuzzy SAM becomes highly capable when deployed with wavelet features. This combination remarkably reduces its computational training burden. The performance of the proposed methodology is examined for two frequently used medical datasets: the lump breast cancer and heart disease. Experiments are deployed with a five-fold cross validation. Results demonstrate the superiority of the proposed method compared to other machine learning methods including probabilistic neural network, support vector machine, fuzzy ARTMAP, and adaptive neuro-fuzzy inference system. Faster convergence but higher accuracy shows a win-win solution of the proposed approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper introduces an approach to cancer classification through gene expression profiles by designing supervised learning hidden Markov models (HMMs). Gene expression of each tumor type is modelled by an HMM, which maximizes the likelihood of the data. Prominent discriminant genes are selected by a novel method based on a modification of the analytic hierarchy process (AHP). Unlike conventional AHP, the modified AHP allows to process quantitative factors that are ranking outcomes of individual gene selection methods including t-test, entropy, receiver operating characteristic curve, Wilcoxon test and signal to noise ratio. The modified AHP aggregates ranking results of individual gene selection methods to form stable and robust gene subsets. Experimental results demonstrate the performance dominance of the HMM approach against six comparable classifiers. Results also show that gene subsets generated by modified AHP lead to greater accuracy and stability compared to competing gene selection methods, i.e. information gain, symmetrical uncertainty, Bhattacharyya distance, and ReliefF. The modified AHP improves the classification performance not only of the HMM but also of all other classifiers. Accordingly, the proposed combination between the modified AHP and HMM is a powerful tool for cancer classification and useful as a real clinical decision support system for medical practitioners.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As a fundamental tool for network management and security, traffic classification has attracted increasing attention in recent years. A significant challenge to the robustness of classification performance comes from zero-day applications previously unknown in traffic classification systems. In this paper, we propose a new scheme of Robust statistical Traffic Classification (RTC) by combining supervised and unsupervised machine learning techniques to meet this challenge. The proposed RTC scheme has the capability of identifying the traffic of zero-day applications as well as accurately discriminating predefined application classes. In addition, we develop a new method for automating the RTC scheme parameters optimization process. The empirical study on real-world traffic data confirms the effectiveness of the proposed scheme. When zero-day applications are present, the classification performance of the new scheme is significantly better than four state-of-the-art methods: random forest, correlation-based classification, semi-supervised clustering, and one-class SVM.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The past decade has seen a lot of research on statistics-based network protocol identification using machine learning techniques. Prior studies have shown promising results in terms of high accuracy and fast classification speed. However, most works have embodied an implicit assumption that all protocols are known in advance and presented in the training data, which is unrealistic since real-world networks constantly witness emerging traffic patterns as well as unknown protocols in the wild. In this paper, we revisit the problem by proposing a learning scheme with unknown pattern extraction for statistical protocol identification. The scheme is designed with a more realistic setting, where the training dataset contains labeled samples from a limited number of protocols, and the goal is to tell these known protocols apart from each other and from potential unknown ones. Preliminary results derived from real-world traffic are presented to show the effectiveness of the scheme.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The problem of unsupervised anomaly detection arises in a wide variety of practical applications. While one-class support vector machines have demonstrated their effectiveness as an anomaly detection technique, their ability to model large datasets is limited due to their memory and time complexity for training. To address this issue for supervised learning of kernel machines, there has been growing interest in random projection methods as an alternative to the computationally expensive problems of kernel matrix construction and support vector optimisation. In this paper we leverage the theory of nonlinear random projections and propose the Randomised One-class SVM (R1SVM), which is an efficient and scalable anomaly detection technique that can be trained on large-scale datasets. Our empirical analysis on several real-life and synthetic datasets shows that our randomised 1SVM algorithm achieves comparable or better accuracy to deep autoen-coder and traditional kernelised approaches for anomaly detection, while being approximately 100 times faster in training and testing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of supervised learning techniques for fitting weights and/or generator functions of weighted quasi-arithmetic means – a special class of idempotent and nondecreasing aggregation functions – to empirical data has already been considered in a number of papers. Nevertheless, there are still some important issues that have not been discussed in the literature yet. In the first part of this two-part contribution we deal with the concept of regularization, a quite standard technique from machine learning applied so as to increase the fit quality on test and validation data samples. Due to the constraints on the weighting vector, it turns out that quite different methods can be used in the current framework, as compared to regression models. Moreover, it is worth noting that so far fitting weighted quasi-arithmetic means to empirical data has only been performed approximately, via the so-called linearization technique. In this paper we consider exact solutions to such special optimization tasks and indicate cases where linearization leads to much worse solutions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of supervised learning techniques for fitting weights and/or generator functions of weighted quasi-arithmetic means – a special class of idempotent and nondecreasing aggregation functions – to empirical data has already been considered in a number of papers. Nevertheless, there are still some important issues that have not been discussed in the literature yet. In the second part of this two-part contribution we deal with a quite common situation in which we have inputs coming from different sources, describing a similar phenomenon, but which have not been properly normalized. In such a case, idempotent and nondecreasing functions cannot be used to aggregate them unless proper preprocessing is performed. The proposed idempotization method, based on the notion of B-splines, allows for an automatic calibration of independent variables. The introduced technique is applied in an R source code plagiarism detection system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

When the distribution of a process characterized by a profile is non normal, process capability analysis using normal assumption often leads to erroneous interpretations of the process performance. Profile monitoring is a relatively new set of techniques in quality control that is used in situations where the state of product or process is represented by a function of two or more quality characteristics. Such profiles can be modeled using linear or nonlinear regression models. In some applications, it is assumed that the quality characteristics follow a normal distribution; however, in certain applications this assumption may fail to hold and may yield misleading results. In this article, we consider process capability analysis of non normal linear profiles. We investigate and compare five methods to estimate non normal process capability index (PCI) in profiles. In three of the methods, an estimation of the cumulative distribution function (cdf) of the process is required to analyze process capability in profiles. In order to estimate cdf of the process, we use a Burr XII distribution as well as empirical distributions. However, the resulted PCI with estimating cdf of the process is sometimes far from its true value. So, here we apply artificial neural network with supervised learning which allows the estimation of PCIs in profiles without the need to estimate cdf of the process. Box-Cox transformation technique is also developed to deal with non normal situations. Finally, a comparison study is performed through the simulation of Gamma, Weibull, Lognormal, Beta and student-t data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Learning robust subspaces to maximize class discrimination is challenging, and most current works consider a weak connection between dimensionality reduction and classifier design. We propose an alternate framework wherein these two steps are combined in a joint formulation to exploit the direct connection between dimensionality reduction and classification. Specifically, we learn an optimal subspace on the Grassmann manifold jointly minimizing the classification error of an SVM classifier. We minimize the regularized empirical risk over both the hypothesis space of functions that underlies this new generalized multi-class Lagrangian SVM and the Grassmann manifold such that a linear projection is to be found. We propose an iterative algorithm to meet the dual goal of optimizing both the classifier and projection. Extensive numerical studies on challenging datasets show robust performance of the proposed scheme over other alternatives in contexts wherein limited training data is used, verifying the advantage of the joint formulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we propose a meta-learning inspired framework for analysing the performance of meta-heuristics for optimization problems, and developing insights into the relationships between search space characteristics of the problem instances and algorithm performance. Preliminary results based on several meta-heuristics for well-known instances of the Quadratic Assignment Problem are presented to illustrate the approach using both supervised and unsupervised learning methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis examined early differences between girls and boys in their attitudes and social behaviour which might help explain why girls and women continue to reject computing. The behaviour of preschool children playing freely for three supervised sessions in either same-gender or mixed-gender pairs with a computerised robot was studied, and then their individual programming performance was measured. Conclusions were that social interaction and computer programming performance were not differentiated by gender. Mixed-gender pairs had a significant effect on both children's style of social interaction and their performance, an impact that was particularly negative for girls.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One reason for semi-supervised clustering fail to deliver satisfactory performance in document clustering is that the transformed optimization problem could have many candidate solutions, but existing methods provide no mechanism to select a suitable one from all those candidates. This paper alleviates this problem by posing the same task as a soft-constrained optimization problem, and introduces the salient degree measure as an information guide to control the searching of an optimal solution. Experimental results show the effectiveness of the proposed method in the improvement of the performance, especially when the amount of priori domain knowledge is limited.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Identifying an appropriate architecture of an artificial neural network (ANN) for a given task is important because learning and generalisation of an ANN is affected by its structure. In this paper, an online pruning strategy is proposed to participate in the learning process of two constructive networks, i.e. fuzzy ARTMAP (FAM) and fuzzy ARTMAP with dynamic decay adjustment (FAMDDA), and the resulting hybrid networks are called FAM/FAMDDA with temporary nodes (i.e. FAM-T and FAMDDA-T, respectively). FAM-T and FAMDDA-T possess a capability of reducing the network complexity online by removing unrepresentative neurons. The performances of FAM-T and FAMDDA-T are evaluated and compared with those of FAM and FAMDDA using a total of 13 benchmark data sets. To demonstrate the applicability of FAM-T and FAMDDA-T, a real fault detection and diagnosis task in a power plant is tested. The results from both benchmark studies and real-world application show that FAMDDA-T and FAM-T are able to yield satisfactory classification performances, with the advantage of having parsimonious network structures.