38 resultados para Toluene.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electrochemistry of lithium is investigated in a number of electrolytes that consist of a lithium salt dissolved in a combined ionic liquid-organic diluent medium. We find that ethylene carbonate and vinylene carbonate improve electrochemical behaviour, while toluene and tetrahydrofuran are less promising.We also present insights into the electrode passivation caused by these diluents in an ionic liquid electrolyte during lithium cycling. We observe that during lithium cycling those electrolytes with carbonate based diluents are the most able to utilise their previously reported improved lithium ion diffusivities. Conversely, tetrahydrofuran, the most promising diluent of those studied in terms of its known ability to increase lithium ion diffusivity is found not to be as advantageous as a diluent. It appears that the poor electrochemical interfacial properties of the tetrahydrofuran electrolyte prevented the realisation of the benefits of the high solution lithium ion diffusivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PET fabric is coated with conducting polypyrrole (PPy) by oxidative polymerization from an aqueous solution of Py using ferric chloride hexahydrate (FeCl3) as oxidant and p-toluene sulphonate (pTSA) as dopant. The optimum concentrations for Py, FeCl3 and pTSA were found to be 0.11, 0.857 and 0.077 mol/l respectively, which yielded a conductive fabrics with resistivity as low as 72 Ω/sq. PPy fabric gained resistivity less than one order of magnitude when aged for 18 months at room temperature. The stabilizing effect of the dopant pTSA against thermal degradation was demonstrated; the undoped samples reached resistivity of around 40 kΩ, whereas doped samples reached less than 2 kΩ at the same temperature and time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study we expand our analysis of using two contrasting organic solvent additives (toluene and THF) in an ionic liquid (IL)/Li NTf 2 electrolyte. Multinuclear Pulsed-Field Gradient (PFG) NMR, spin-lattice (T1) relaxation times and conductivity measurements over a wide temperature range are discussed in terms of transport properties and structuring of the liquid. The conductivity of both additive samples is enhanced the most at low temperatures, with THF slightly more effective than toluene. Both the anion and lithium self-diffusivity are enhanced in the same order by the additives (THF > toluene) while that of the pyrrolidinium cation is marginally enhanced. 1H spin-lattice relaxation times indicate a reasonable degree of structuring and anisotropic motion within all of the samples and both 19F and 7Li highlight the effectiveness of THF at influencing the lithium coordination within these systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As reported previously, water saturated trihexyl(tetradecyl)phosphonium chloride ([P6,6,6,14][Cl]) ionic liquid (IL) is a promising electrolyte for magnesium-air batteries. The added water plays an important role in enabling high rate and high efficiency Mg dissolution while stabilizing the Mg interphase. In this work, the role of the water was investigated by replacement with other additives such as toluene and tetrahydrofuran to specifically target the assumed roles of water, namely: (i) enhancement of transport properties; (ii) complexation and stabilization of the Mg anode; (iii) provision of active protons for the cathodic reaction. Discharge tests show that ethylene glycol supports comparable performance to that provided by water. Examination of the viscosity and conductivity of different [P6,6,6,14][Cl]/additive mixtures indicates that a simple consideration of solution characteristics cannot explain the observed trends. Rather, other factors, such as the presence of active protons and/or oxygen-donor groups, are also key features for the development of IL electrolytes for practical magnesium-air cells. Finally, the presence of ethylene glycol in the electrolyte results in a complex gel on the Mg interface, similar to that found in the presence of water. This may also play a role in enabling stable discharge of the Mg anode. © 2014 The Electrochemical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the surge of interest in miniaturized implanted medical devices (IMDs), implantable power sources with small dimensions and biocompatibility are in high demand. Implanted battery/supercapacitor devices are commonly packaged within a case that occupies a large volume, making miniaturization difficult. In this study, we demonstrate a polymer electrolyte-enabled biocompatible magnesium-air battery device with a total thickness of approximately 300 μm. It consists of a biocompatible polypyrrole-para(toluene sulfonic acid) cathode and a bioresorbable magnesium alloy anode. The biocompatible electrolyte used is made of choline nitrate (ionic liquid) embedded in a biopolymer, chitosan. This polymer electrolyte is mechanically robust and offers a high ionic conductivity of 8.9 × 10(-3) S cm(-1). The assembled battery delivers a maximum volumetric power density of 3.9 W L(-1), which is sufficient to drive some types of IMDs, such as cardiac pacemakers or biomonitoring systems. This miniaturized, biocompatible magnesium-air battery may pave the way to a future generation of implantable power sources.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Herein, we report the phase inversion of ionomer-stabilized emulsions to form high internal phase emulsions (HIPEs) induced by salt concentration and pH changes. The ionomers are sulfonated polystyrenes (SPSs) with different sulfonation degrees. The emulsion types were determined by conductivity measurements, confocal microscopy and optical microscopy, and the formation of HIPE organogels was verified by the tube-inversion method and rheological measurements. SPSs with high sulfonation degrees (water-soluble) and low sulfonation degrees (water-insoluble) can stabilize oil-in-water emulsions; these emulsions were transformed into water-in-oil HIPEs by varying salt concentrations and/or changing the pH. SPS, with a sulfonation degree of 11.6%, is the most efficient, and as low as 0.2 (w/v)% of the organic phase is enough to stabilize the HIPEs. Phase inversion of the oil-in-water emulsions occurred to form water-in-oil HIPEs by increasing the salt concentration in the aqueous phase. Two phase inversion points from oil-in-water emulsions to water-in-oil HIPEs were observed at pH 1 and 13. Moreover, synergetic effects between the salt concentration and pH changes occurred upon the inversion of the emulsion type. The organic phase can be a variety of organic solvents, including toluene, xylene, chloroform, dichloroethane, dichloromethane and anisole, as well as monomers such as styrene, butyl acrylate, methyl methacrylate and ethylene glycol dimethacrylate. Poly(HIPEs) were successfully prepared by the polymerization of monomers as the continuous phase in the ionomer-stabilized HIPEs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Accidental spills and subsequent fires during oil storage and transportation periods cause serious damage to environments. Herein, we present a novel route to enhance oil safety by transforming oils into high internal phase emulsion (HIPE) hydrogels. These HIPE hydrogels are stabilized by solvent- or pH-driven assembled block copolymer (BCP), namely poly(4-vinylpyridine)-block-poly(ethylene glycol)-block-poly(4-vinylpyridine) (4VPm-EGn-4VPm). The assembled BCP shows high efficiency to stabilize HIPE hydrogels with a low concentration of 1.0 (w/v) % relative to the continuous aqueous phase. The volume fraction of the dispersed organic phase can be as high as 89% with a variety of oils, including toluene, xylene, blended vegetable oil, canola oil, gasoline, diesel, and engine oil. These smelly and flammable liquids were formed into HIPE hydrogels and thus their safety was enhanced. As the assembly is pH sensitive, oils trapped in the HIPE hydrogels can be released by simply tuning pH values of the continuous aqueous phase. The aqueous phase containing BCP can be reused to stabilize HIPE hydrogels after naturalization. These assembled BCP stabilized HIPE hydrogels offer a novel and safe approach to preserve and transport these smelly and flammable liquid oils, avoiding environmental damage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Complex permittivity of conducting polypyrrole (PPy)-coated Nylon-Lycra textiles ismeasured using a free space transmission measurement technique over the frequency range of1–18 GHz. The aging of microwave dielectric properties and reflection, transmission and absorptionfor a period of 18 months is demonstrated. PPy-coated fabrics are shown to be lossy over thefull frequency range. The levels of absorption are shown to be higher than reflection in the testedsamples. This is attributed to the relatively high resistivity of the PPy-coated fabrics. Both the dopantconcentration and polymerisation time affect the total shielding effectiveness and microwave agingbehaviour. Distinguishing either of these two factors as being exclusively the dominant mechanismof shielding effectiveness is shown to be difficult. It is observed that the PPy-coated Nylon-Lycrasamples with a p-toluene sulfonic acid (pTSA) concentration of 0.015 M and polymerisation times of60 min and 180 min have 37% and 26% decrease in total transmission loss, respectively, upon agingfor 72 weeks at room temperature (20 C, 65% Relative humidity (RH)). The concentration of thedopant also influences the microwave aging behaviour of the PPy-coated fabrics. The samples with ahigher dopant concentration of 0.027 mol/L pTSA are shown to have a transmission loss of 32.6% and16.5% for short and long polymerisation times, respectively, when aged for 72 weeks. The microwaveproperties exhibit better stability with high dopant concentration and/or longer polymerization times.High pTSA dopant concentrations and/or longer polymerisation times result in high microwaveinsertion loss and are more effective in reducing the transmission and also increasing the longevity ofthe electrical properties.