57 resultados para Synovial Fluid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present results of a theoretical study of the effect of surface deformation on a macroscopic system composed of a solid surface interacting with a fluid drop through electrostatic double-layer forces. The analysis involves numerically solving a Laplace equation suitably modified to describe the shape of a liquid drop subjected to a repulsive double-layer force. The latter is evaluated in nonlinear mean-field theory. Some analytical results are also given. The results indicate that although deformation need not be significant on the macroscopic scale, its effect on the interaction is significant and modifies the picture usually presented in DLVO theory. The decay length of the exponential repulsion deviates marginally from the Debye length, dependent on the interfacial tension of the drop. More significantly, at separations where the double-layer force becomes comparable to the internal pressure of the drop, the net force between the two bodies, the local radius of curvature of the drop, and the amount of deformation grow abruptly. The results of this work are relevant to emulsion stability, micelle, vesicle, and cell interactions, and recent experiments on bubble-particle interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mg alloy AZ31 is an attractive candidate for coronary artery stents, as it possesses excellent biocompatibility in human body and good mechanical properties. However, AZ31 magnesium alloys generally have poor corrosion resistance in the body environment. This paper reports on the early stages of an investigation into the corrosion mechanism and the morphology of corrosion of AZ31 in simulated body fluid (SBF). The investigation will also consider ways of improving corrosion resistance of this alloy in SBF through the use of ionic liquids. The results to date have shown that AZ31 suffers severe localized pitting corrosion in SBF. The pits mainly develop adjacent to the Al-Mn intermetallic second phase in the α matrix. Energy Dispersive X-Ray Spectroscopy results revealed the presence of Mg, O, Ca, and P in the layer of corrosion product. Treatment of the AZ31 alloy prior to corrosion testing in SBF with the ionic liquid trimethyl (butyl) phosphonium diphenyl phosphate (P1444DPP) produced some increase in the corrosion resistance of the alloy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study examined firefighters' ability to consume a prescribed fluid volume (1200 ml · h-1) during a wildland fire suppression shift and compare the effect of this additional fluid prescription with self-paced drinking on firefighters' hydration status and plasma sodium concentration post shift and their heart rate, core temperature and physical activity during their shift. Thirty-four firefighters were evenly divided into two drinking groups: self paced and prescribed. Prescribed drinkers did not meet the required 1200 ml·h-1 intake, yet they consumed twice the fluid drank by the self-paced group. No differences were noted between groups in plasma sodium levels or hydration status before or after their shift. Prescribed fluid consumption resulted in significantly lower core temperature between two and six hours into the shift. This did not coincide with lower cardiovascular strain, greater physical activity when compared to the self-paced drinking group. Additional fluid consumption (above self-paced intake) did not improve firefighter activity or physiological function (though it may buffer rising core temperature). It seems that wildland firefighters, at least in mild to warm weather conditions, can self-regulate their fluid consumption and work behaviour to leave the fireground hydrated at the conclusion of their shift.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For fluid-filled closed cell composites widely distributed in nature, the configuration evolution and effective elastic properties are investigated using a micromechanical model and a multiscale homogenization theory, in which the effect of initial fluid pressure is considered. Based on the configuration evolution of the composite, we present a novel micromechanics model to examine the interactions between the initial fluid pressure and the macroscopic elasticity of the material. In this model, the initial fluid pressure of the closed cells and the corresponding configuration can be produced by applying an eigenstrain at the introduced fictitious stress-free configuration, and the pressure-induced initial microscopic strain is derived. Through a configuration analysis, we find the initial fluid pressure has a prominent effect on the effective elastic properties of freestanding materials containing pressurized fluid pores, and a new explicit expression of effective moduli is then given in terms of the initial fluid pressure. Meanwhile, the classical multiscale homogenization theory for calculating the effective moduli of a periodical heterogeneous material is generalized to include the pressurized fluid "inclusion" effect. Considering the coupling between matrix deformation and fluid pressure in closed cells, the multiscale homogenization method is utilized to numerically determine the macroscopic elastic properties of such composites at the unit cell level with specific boundary conditions. The present micromechanical model and multiscale homogenization method are illustrated by several numerical examples for validation purposes, and good agreements are achieved. The results show that the initial pressure of the fluid phase can strengthen overall effective bulk modulus but has no contribution to the shear modulus of fluid-filled closed cell composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Increasing dietary sodium drives the thirst response. Because sugar-sweetened beverages (SSBs) are frequently consumed by children, sodium intake may drive greater consumption of SSBs and contribute to obesity risk.

Objective: We examined the association between dietary sodium, total fluid, and SSB consumption in a nationally representative sample of US children and adolescents aged 2–18 y.

Design: We analyzed cross-sectional data from NHANES 2005–2008. Dietary sodium, fluid, and SSB intakes were assessed with a 24-h dietary recall. Multiple regression analysis was used to assess associations between sodium, fluid, and SSBs adjusted for age, sex, race-ethnic group, body mass index (BMI), socioeconomic status (SES), and energy intake.

Results: Of 6400 participants, 51.3% (n = 3230) were males, and the average (±SEM) age was 10.1 ± 0.1 y. The average sodium intake was 3056 ± 48 mg/d (equivalent to 7.8 ± 0.1 g salt/d). Dietary sodium intake was positively associated with fluid consumption (r = 0.42, P < 0.001). After adjustment for age, sex, race-ethnic group, SES, and BMI, each additional 390 mg Na/d (1 g salt/d) was associated with a 74-g/d greater intake of fluid (P < 0.001). In consumers of SSBs (n = 4443; 64%), each additional 390 mg Na/d (1 g salt/d) was associated with a 32-g/d higher intake of SSBs (P < 0.001) adjusted for age, sex, race-ethnic group, SES, and energy intake.

Conclusions: Dietary sodium is positively associated with fluid consumption and predicted SSB consumption in consumers of SSBs. The high dietary sodium intake of US children and adolescents may contribute to a greater consumption of SSBs identifying a possible link between dietary sodium intake and excess energy intake.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, the use of magnesium alloys as metallic implant materials for biodegradable coronary artery stents has been steadily growing in interest. However, AZ31 magnesium alloys present poor corrosion resistance in the body environment. This work reports on the use of a treatment with low-toxicity IL Trimethyl (butyl) phosphonium diphenyl phosphate P1444DPP, which provides corrosion protection for magnesium alloy AZ31 in simulated body fluid (SBF). Before IL treatment, surface was cleaned by HNO3 and H3PO4 acid pickling solution. The effect of ionic liquid treatment on the corrosion performance of magnesium alloys AZ31in simulated body fluid has been investigated by electrochemical tests and the observation of surface morphology. The results show that this IL treatment succeeded in increasing the corrosion resistance of AZ31 when exposed to SBF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to examine 1) wildfire fighters' ability to consume the prescribed fluid volume (1200 mL h-1), 2) the effect of fluid intake on plasma sodium and hydration, and 3) the effect of fluid intake on firefighters' heart rate, core temperature and activity during emergency suppression shifts. Methods: Thirty-four firefighters were divided into ad libitum (AD, n = 17) and prescribed (PR, n = 17) drinking groups. Results: PR drinkers did not meet the prescribed fluid target, yet consumed over double the volume of AD drinkers. No differences between groups in plasma sodium or hydration were noted. PR drinking resulted in lower core temperature between 2 and 6 h. This did not coincide with reduced cardiovascular strain, greater work activity or larger distances covered when compared to AD drinkers. Conclusion: Extra fluid consumption (above AD) did not improve firefighter activity or physiological function (though PR firefighters core temperature was lower earlier in their shift). Firefighter can self-regulate their fluid consumption behavior and work rate to leave the fireground euhydrated.