70 resultados para Surface corrosion


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of rf-power in the range from 100 to 200 W on the electrochemical properties of TiN coatings deposited on 316L stainless steel was investigated by using various electrochemical techniques in a 3.5-wt\% NaCl solution. Surface analyses were also conducted to analyze the coating characteristics. X-ray diffraction (XRD) and atomic force microscopy (AFM) analyses confirmed that increasing the rf-power led to a preferred orientation of the TiN(200) microstructure and decreased the surface roughness. The potentiodynamic test results confirmed the passive behavior of all of the specimens with low passive current densities and demonstrated that the effective pitting resistance of the TiN coatings increased with increasing rf-power. The electrochemical impedance spectroscopy (EIS) tests showed that the TiN films deposited with high rf-power had excellent corrosion resistance during an immersion time of 720 h due to their high total resistance and low porosity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aqueous corrosion behavior of low-alloy steel with aluminum contents was examined in a 10 wt% H2SO4 (pH 0.13) solution using electrochemical techniques and surface analyses. The corrosion resistance of the new alloy steel was evaluated in terms of electrochemical parameters, such as passive current density, film, and charge transfer resistances. The results showed that a high Al content in the steel imparted better passivation behavior resulting in a lower corrosion rate. It related to the enrichment of iron carbonate and hydrocarbon by the dissolution of the carbide phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The corrosion behavior of magnesium single crystals with various crystallographic orientations was examined in this study. To identify the effects of surface orientation on the corrosion behavior in a systematic manner, single-crystal specimens with ten different rotation angles of the plane normal from the [0001] direction to the [1010] direction at intervals of 10° were prepared and subjected to potentiodynamic polarization and potentiostatic tests as well as electrochemical impedance spectroscopy (EIS) measurements in 3.5 wt.% NaCl solution. Potentiodynamic polarization results showed that the pitting potential (E pit) first decreased from −1.57 V SCE to −1.64 V SCE with an increase in the rotation angle from 0° to 40°, and then increased to −1.60 V SCE with a further increase in the rotation angle to 90°. The results obtained from potentiostatic tests are also in agreement with the trend in potentiodynamic polarization tests as a function of rotation angle. A similar trend was also observed for the depressed semicircle and the total resistances in the EIS measurements due to the facile formation of MgO and Mg(OH)2 passive films on the magnesium surface. In addition, the amount of chloride in the passive film was found first to increase with an increase in rotation angle from 0° to 40°, then decrease with a further increase in rotation angle, indicating that the tendency to form a more protective passive film increased for rotation angle near 0° [the (0001) plane] or 90° [the (1010) plane].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on the corrosion of Mg alloy AZ31 in simulated body fluid (SBF) using static immersion tests and electrochemical impedance spectroscopy. A preliminary study on the effect of flowing SBF on the corrosion behaviour of AZ31 has also been carried out. Low toxicity ionic liquids (ILs) trimethyl(butyl)phosphonium diphenyl phosphate P1444DPP and trihexyl(tetradecyl)-phosphonium bis-2,4,4trimethylpentyl-phosphinate [P66614][ i(C8) 2PO2] have been used to provide corrosion protection for AZ31 in SBF. Time dependent immersion tests indicate that under static conditions, AZ31 suffers severe localised corrosion in SBF, with pits developing predominantly beside the Al-Mn intermetallic phase in the α matrix. At longer immersion times, the corrosion product eventually precipitates and covers the entire specimen surface. When exposed to SBF under flowing conditions with a shear stress of 0·88 Pa, more uniform corrosion was observed. The optical profilometry results and electrochemical impedance spectroscopy analysis suggest that both P
1444DPP and [P66614][i(C8)2PO2] pretreatments can increase the corrosion resistance of AZ31 in SBF, in particular by decreasing the number of deeper pits found on the alloy surface. Cytotoxic test shows that the presence of the ILs P
1444DPP and [P66614][i(C8)2PO2] in cell culture media slightly inhibits the growth of human coronary artery endothelial cells in comparison with the good cell viability around the treated specimen. A pretreatment with IL is used in order to improve the corrosion resistance of this alloy in SBF. © 2012 Institute of Materials, Minerals and Mining.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of the aluminium alloy AA2024-T3 has long been associated with a strong vulnerability to localised corrosion. Dealloying and pitting corrosion can occur on and around intermetallic particles when exposed to aggressive environments such as sodium chloride electrolytes. Specific combinations of rare earths and organic compounds have demonstrated strong synergistic inhibition on the AA2024-T3 alloy. This work has focused on rare earths and organic compounds containing thiol functional groups. It is believed that the sulphur in the thiol group can form protective films over the surface of copper-rich intermetallic particles due to the affinity between copper and sulphur. Previous studies with the multiwell tests have identified that solutions containing sodium mercaptoacetate provided strong inhibition at pH 3 and 6. This work presents the initial findings from the polarisation tests and constant immersion corrosion experiments in the presence of sodium mercaptoacetate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, the use of magnesium alloys as metallic implant materials for biodegradable coronary artery stents has been steadily growing in interest. However, AZ31 magnesium alloys present poor corrosion resistance in the body environment. This work reports on the use of a treatment with low-toxicity IL Trimethyl (butyl) phosphonium diphenyl phosphate P1444DPP, which provides corrosion protection for magnesium alloy AZ31 in simulated body fluid (SBF). Before IL treatment, surface was cleaned by HNO3 and H3PO4 acid pickling solution. The effect of ionic liquid treatment on the corrosion performance of magnesium alloys AZ31in simulated body fluid has been investigated by electrochemical tests and the observation of surface morphology. The results show that this IL treatment succeeded in increasing the corrosion resistance of AZ31 when exposed to SBF.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rare earth organic compounds can provide an environmentally safe and non-toxic alternative to chromates as corrosion inhibitors for some steel and aluminium applications. For steel lanthanum 4-hydroxy cinnamate offers corrosion protection and reduces the susceptibility to hydrogen embrittlement. Recent work has also indicated that it inhibits the corrosion of steel in environments containing high levels of carbon dioxide. For aluminium alloys, cerium diphenyl phosphate provides excellent corrosion inhibition in chloride environments, and reduces susceptibly to stress corrosion cracking. Furthermore, for both steel and aluminium alloys filiform corrosion can be suppressed when rare earth inhibitor compounds are added as pigments to polymer coatings. The levels of inhibition observed are thought to be due to synergistic effects between the rare earth and organic parts of these novel compounds, and are related to the various species that may be present in the complex chemical conditions that develop in solution close to a metal surface. This paper reviews some of the published research conducted by the group at Deakin University over recent years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several new technical developments have been made based on the combined use of the wire beam electrode (WBE), electrochemical noise analysis (ENA) and the scanning reference electrode technique (SRET). These have included: (i) The WBE-R n method- the combined use of the WBE and the noise resistance (Rn) to map the rates and patterns of uniform or localized corrosion; (ii) The WBE-Noise Signatures method- the combined use of the WBE and the noise signature to detect the origination and propagation of localized corrosion; and (iii) The WBE-SRET method- the combined use of the WBE and SRET to investigate localized corrosion from both the metallic and electrolyte phases of a corroding metal surface. This paper presents a brief review on these novel methods and their applications for detecting general and localized corrosion, for mapping the rates of corrosion, and for studying corrosion inhibitors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New progresses have been made during recent years in the application of the wire beam electrode (WBE, a coupled multielectrode array) for studying electroplating of metallic coatings, for monitoring the electrodeposition of polymer coatings, and for evaluating the performance of anti-corrosion coatings. The WBE allows localized electrode processes to occur over different locations of its surface under external anodic or cathodic polarization and permits monitoring of nonuniform electrodeposition processes. Several typical experiments are presented in this paper. One sample experiment is the characterization of nonuniform electroplating of nickel coating, which was achieved by mapping the distributions of currents over a WBE surface that was under cathodic polarization. Various characteristic current distribution patterns, which indicate different electrodeposition mechanisms or low covering-power, have been observed. These patterns were found to correlate with the effects of several affecting factors such as electrolyte concentration, temperature and agitation flow. Another sample experiment is the investigation of nonuniform anodic electrodeposition of polyaniline (PANI) coatings and the understanding of their anti-corrosion performance and mechanisms. Anodic polarization currents were measured from various locations over the WBE surface in order to produce anodic polarization current maps under PANI deposition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrochemical parameters including maximum anodic current density, total anodic current density, the number of anodic sites and the localised corrosion intensity index have been extracted from galvanic current distribution maps that were acquired using an electrochemically integrated multielectrode array, namely, the wire beam electrode. Experiments have been carried out to demonstrate the application of these new electrochemical parameters for characterising localised corrosion inhibition of metals. A typical corrosion inhibitor, potassium dichromate, was found to affect localised corrosion processes in various ways, for instance in sodium chloride solutions, it was found to inhibit localised corrosion of aluminium alloy AA 2024-T3 by suppressing galvanic corrosion activities occurring over the alloy surface, whereas it was found to control localised corrosion of AA 1100 by creating a large number of minor anodes distributing randomly over the metal surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies have shown that cerium diphenyl phosphate (Cedpp) 3 is a very effective inhibitor of corrosion of aluminium alloys in chloride solutions. This paper describes the results of further studies using electrochemical and constant immersion corrosion tests to compare the effectiveness of Ce(dpp) 3 and Mischmetal diphenyl phosphate Mm(dpp) 3 as inhibitors of corrosion pitting on AA7075-T651 aluminium alloy. The results shows that both Ce(dpp) 3 and Mm(dpp) 3 are excellent inhibitors of pitting corrosion of this alloy in very aggressive environments of continuously aerated 0.1M and 1.0M sodium chloride (NaCl) solutions. Polarisation tests indicate that these compounds act as a cathodic inhibitors by reducing the rate of the oxygen reduction reaction, which results in a decreased corrosion current density and a separation of the corrosion potential from the pitting potential. This inhibition is thought to be due to the formation of a surface film consisting of rare earth metal oxide, aluminium oxide and a cerium-aluminium organo-phosphate complex. Surface analysis data from scanning electron microscopy and X-ray Energy Dispersive Spectroscopy show the complex nature of this protective film. This work further develops our understanding about the mechanisms through which these complex films form, and how inhibition occurs in the presence of these compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnesium alloy ZE41 (Mg-Zn-RE-Zr), which is used extensively in the aerospace industry, possesses excellent mechanical properties albeit poor corrosion resistance. This work investigates the mechanism of corrosion, and the interaction between the grain boundary intermetallic phases, the zirconium (Zr)-rich regions within the grains and the bulk Mg rich matrix in both the as-cast and heat-treated conditions. The results of optical and scanning electron microscopy (SEM) show the importance of the microstructure in the initiation and propagation of corrosion in an aqueous environment. The Zr-rich regions play a distinct role in the early stages of corrosion with this alloy. The second part of this work investigates the interaction of two different ionic liquids (ILs) with the surface of the ZE41 alloy. ILs based on trihexyltetradecylphosphonium (P 6,6,6,14) coupled with either diphenylphosphate (DPP) or bis(trifluoromethanesulfonyl) amide (Tf 2N) have been shown to react with Mg alloy surfaces, leading to the formation of a surface film that can improve the corrosion resistance of the alloy. The interaction of the ILs with the ZE41 surface has been investigated by optical microscopy and SEM. Surface characterization has been performed using Time of Flight-Secondary Ion Mass Spectrometry (ToF-SIMS) and X-ray Photoelectron Spectroscopy (XPS). The surface characterization and microscopy revealed the preferential interaction with the grain boundaries and grain boundary phases. Thus the morphology and microstructure of the Mg surface seems critical in determining the nature of the interaction with the IL. The corrosion protection of the IL films formed on the ZE41 surface was investigated by SEM and potentiodynamic polarisation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scanning electrochemical microscopy (SECM) in surface generation/tip collection mode is investigated as an assessment tool for studying the corrosion behaviour of magnesium in simulated biological fluid. The technique provides a local map of hydrogen (H2) evolution which alone can be used as a direct measure of corrosion. The H2 generated during corrosion of magnesium is oxidized at the probe(i.e. a Pt ultra micro-electrode);with the magnitude of the current generated due to oxidation being indicative of the intensity of H2 evolution at a local scale on the magnesium surface. This method was calibrated using a cathodically polarized Pt disk to simulate H2 evolution in a controlled condition on a homogeneous surface. Potential interference from dissolving Mg or high local pH was also investigated. The technique was implemented for studying H2 evolution at the surface of AZ31 as a model Mg alloy.SECM results combined with SEM-EDX and profilometry data revealed that local domains of higher H2 evolution on the surface of AZ31 are in close proximityof the observed pitting sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rare earth organic compounds can provide an environmentally safe and non-toxic alternative to chromates as corrosion inhibitors for some steel and aluminium applications. For steel lanthanum 4-hydroxy cinnamate offers corrosion protection and reduces the susceptibility to hydrogen embrittlement. Recent work has also indicated that it inhibits the corrosion of steel in environments containing high levels of carbon dioxide. For aluminium alloys, cerium diphenyl phosphate provides excellent corrosion inhibition in chloride environments, and reduces susceptibly to stress corrosion cracking. Furthermore, for both steel and aluminium alloys filiform corrosion can be suppressed when rare earth inhibitor compounds are added as pigments to polymer coatings. The levels of inhibition observed are thought to be due to synergistic effects between the rare earth and organic parts of these novel compounds, and are related to the various species that may be present in the complex chemical conditions that develop in solution close to a metal surface. This paper reviews some of the published research conducted by the group at Deakin University over recent years.©2014 Institute of Materials, Minerals and Mining.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Praseodymium 4-hydroxycinnamate (Pr(4OHCin)3) was investigated as a novel corrosion inhibitor for steel in NaCl solutions, and found to be effective at inhibiting corrosion in both CO2-containing and naturally-aerated systems. Surface analysis results suggest that the corrosion inhibition ability of Pr(4OHCin)3 in the naturally-aerated corrosion system could be attributed to the formation of a continuous protective film. For the CO2-containing system, the corrosion inhibition efficiency of Pr(4OHCin)3 was predominantly because of formation of protective inhibiting deposits at the active electrochemical corrosion sites, in addition to a thinner surface film deposit. © 2013.