90 resultados para Split tensile strength


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Natural wool/cellulose blends were prepared in an ionic liquid green solvent, 1-butyl-3-methylimidazolium chloride (BMIMCl) and the films were formed subsequently from the coagulated solutions. The wool/cellulose blend films show significant improvement in thermal stability compared to the coagulated wool and cellulose. Moreover, the blend films exhibited an increasing trend of tensile strength with increase in cellulose content in the blends which could be used for the development of wool-based materials with improved mechanical properties, and the elongations of the blends were considerably improved with respect to the coagulated films of wool and cellulose. It was found that there was hydrogen bonding interaction between hydroxyl groups of wool and cellulose in the coagulated wool/cellulose blends as determined by Fourier transform infrared (FTIR) spectroscopy. The ionic liquid was completely recycled with high yield and purity after the blend film was prepared. This work presents a green processing route for development of novel renewable blended materials from natural resource with improved properties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A highly ordered poly(dimethyl siloxane)-poly(glycidyl methacrylate) (PDMS-PGMA) reactive diblock copolymer was synthesized and used to modify bisphenol A-type epoxy resin (ER). The PDMS-PGMA block copolymer consisted of epoxy-miscible PGMA blocks and an epoxy-immiscible PDMS block. The PGMA reactive block of the block copolymer formed covalent bonds with cured epoxy and was involved in the network formation, and the PDMS block phase separated to give different ordered and disordered nanostructures at different blend compositions. The solvent cast PDMS-PGMA diblock copolymer showed ordered hexagonal cylindrical morphology. A highly ordered morphology consisting of hexagonal cylinders inside the lamellar morphology was observed in the cured PDMS-PGMA block copolymer. In the cured ER/PDMS-PGMA blends, a variety of morphologies including lamellar, cubic and worm-like and spherical nanostructures were detected depending on the blend composition. Moreover, the addition of this reactive diblock copolymer significantly increases the hydrophobicity and the glass transition temperature. It also improves the tensile strength and tensile ductility of the nanostructured thermosets at low diblock copolymer contents.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Silk fibroin films are promising materials for a range of biomedical applications. To understand the effects of casting solvents on film properties, we used water (W), formic acid (FA), and trifluoroacetic acid (TFA) as solvents. We characterized molecular weight, secondary structure, mechanical properties, and degradation behavior of cast films. Significant degradation of fibroin was observed for TFA-based film compared to W and TA-based films when analyzed by SDS-PAGE. Fibroin degradation resulted in a significant reduction in tensile strength and modulus of TFA-based films. Compared to water, TFA-based films demonstrated lower water solubility (19.6% vs. 62.5% in 12 h) despite having only a marginal increase in their ß-sheet content (26.9% vs. 23.7%). On the other hand, FA-based films with 34.3% ß-sheet were virtually water insoluble. Following solubility treatment, ß-sheet content in FA-based films increased to 50.9%. On exposure to protease XIV, water-annealed FA-based films lost 74% mass in 22 days compared to only 30% mass loss by ethanol annealed FA films. This study demonstrated that a small variation in the ß-sheet percentage and random coil conformations resulted in a significant change in the rates of enzymatic degradation without alteration to their tensile properties. The film surface roughness changed with the extent of enzymatic hydrolysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper investigated the microstructural characterization and mechanical properties of Mg-Zr-Ca alloys prepared by hot-extrusion for potential use in biomedical applications. Mg-Zr-Ca alloys were fabricated by commercial pure Mg (99.9%), Ca (99.9%), and master Mg-33% Zr alloy (mass%). The microstructural characterization of the hot-extruded Mg-Zr-Ca alloys was examined by X-ray diffraction analysis and optical microscopy, and the mechanical properties were determined from tensile tests. The experimental results indicate that the hot-extruded Mg-Zr-Ca alloys with 1 mass% Ca are composed of one single phase and those alloys with 2 mass% Ca consist of both Mg2Ca and α phase. The hot-extruded Mg-Zr-Ca alloys exhibit equiaxed granular microstructures and the hot-extrusion process can effectively increase both the tensile strength and ductility of Mg-Zr-Ca alloys. The hot-extruded Mg-1Zr-1Ca alloy (mass%) exhibits the highest strength and best ductility among all the alloys, and has much higher strength than the human bone, suggesting that it has a great potential to be a good candidate for biomedical application.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In situ prepared zinc disorbate (ZDS) in natural rubber (NR) by the reaction of zinc oxide and sorbic acid was used to reinforce the dicumyl peroxide-cured NR vulcanizate. The changes in mechanical properties of NR vulcanizates after ageing and were determined and the structures and thermal stability of vulcanizates were also analyzed using scanning electron microscope and thermal gravimetric analyzer. The change ratios in tensile strength and elongation at break of NR vulcanizate with theoretic formation of ZDS of 21phr can be increased to -33 from -44 and -27 from -38 after ageing and the initial weight loss temperature of NR vulcanizate can be increased for about 7°C as compared to un-reinforced NR vulcanizate, indicating that the antioxidative behavior and thermal stability of NR can be improved significantly with theoretic formation of ZDS of 21phr.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the current study, a novel approach was employed to produce a unique combination of ultrafine ferrite grains and low temperature bainite in a low carbon steel with a high hardenability. The thermomechanical route included warm deformation of supercooled austenite followed by reheating in the ferrite region and then cooling to bainitic transformation regime (i.e. 400-250°C). The resultant microstructure was ultrafine ferrite grains (i.e. <4μm) and very fine bainite consisting of bainitic ferrite laths with high dislocation density and retained austenite films. This microstructure offers a unique combination of ultimate tensile strength and elongation due to the presence of ductile fine ferrite grains and hard low temperature bainitic ferrite laths with retained austenite films. The microstructural characteristics of bainite were studied using optical microscopy in conjunction with scanning and transmission electron microscopy techniques.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wool fabrics, ultrasonically treated in various chemical conditions and for different time durations, were analysed for thermal properties by thermo-gravimetric analysis and differential scanning calorimeter, in comparison with the untreated fabric. Fabric mechanical properties, such as bending and tensile performance, and changes in fibre morphology were also evaluated before and after ultrasonic treatment.It is found that wool treated with ultrasonics at the appropriate time, has less mass loss and a higher thermal degradation temperature than that without ultrasonic treatment or with prolonged ultrasonic treatment. Resistance to thermal degradation is reduced when wool is ultrasonically treated in the presence of alkali. Differential scanning calorimeter analysis shows that while ultrasonic treatment has little effect on fibre crystallinity, an appropriate treatment can provide wool with increased water absorption. Ultrasonic treatment stiffens wool fabric to some extent when the treatment time is prolonged. The addition of detergent alone to the ultrasonic bath has little effect on fabric tensile behaviour, whereas a treatment with both detergent and alkali produces severe fibre damage and significant loss of fabric tensile strength.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Isothermal transformation (TTT) behavior of the low carbon steels with two Si contents (0.50 wt pct and 1.35 wt pct) was investigated with and without the prior deformation. The results show that Si and the prior deformation of the austenite have significant effiects on the transformation of the ferrite and bainite. The addition of Si refines the ferrite grains, accelerates the polygonal ferrite transformation and the formation of M/A constituents, leading to the improvement of the strength. The ferrite grains formed under the prior deformation of the austenite become more homogeneous and refined. However, the influence of deformation on the tensile strength of both steels is dependent on the isothermal temperatures. Thermodynamic calculation indicates that Si and prior deformation reduce the incubation time of both ferrite and bainite transformation, but the effiect is weakened by the decrease of the isothermal temperatures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The deformation and fracture characteristics of a low carbon Si–Mn steel with ferrite/bainite dual–phase structure were investigated by thermo–mechanical controlled process (TMCP). The results showed that the curves of the instantaneous work–hardening factor n* value versus true strain ε are made up with three stages during uniform plastic deformation: n* value is relatively higher at stage I, decreases slowly with ε in stage II, and then decreases quickly with ε in stage III. Compared tothe equiaxed ferrite/bainite dual–phase steel, the quasi–polygonal ferrite/bainite dual–phase steel shows higher tensile strength and n*value in the low strain region. The voids or micro–cracks formed not only at ferrite–bainite interfaces but also within ferrite grains in the necked region, which can improve the property of resistance to crack propagation by reducing local stress concentration of the crack tips.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effects of Si and Mn contents on transformation temperature r3, transformed microstructure and mechanical properties of three kinds of low-carbon steels during continuous cooling were investigated. A r3 rises by 15-25°C when increasing Si content from 0.50% to 1.35%, and it drops by 30-50°C when increasing Mn content from 0.97% to 1.43%. The effect of Mn on A r3 is more significant than Si. Si stimulates the precipitation of the high-temperature equiaxed ferrite to suppress the bainite transformation, but Mn not only provides the grain refining of transformed microstructure but also stimulates the forming of bainite. The homogeneous and grain refining diphase ferrite/bainite steel (w(Si)=0.56, w(Mn)=1.43) can be obtained after deformed at 850°C and cooled at the rate 30°C/s, of which the tensile strength is up to 654 MPa.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Based on the thermo-mechanical controlled process, the effects of Si on microstructural evolution, tensile properties, impact toughness, and stretch-flangeability of ferrite and bainite dual-phase (FBDP) steels were systematically investigated. The addition of Si from 0 to 0.95% promoted the formation of fine and equiaxed ferrite grains, and high Si (0.95%) also resulted in the formation of blocky martensite islands and retained austenite. Yield and tensile strengths, and uniform and total elongations all increased with increasing Si content. Therefore, the tensile strength and ductility balance was improved by Si addition due to the increasing strain-hardening rate. The fractured morphologies after hole-expansion showed that the excellent stretch-flangeability of FBDP steels was associated with the micro-cracks propagating through in ferrite phase as well as the elongated ferrite grains along the direction perpendicular to the crack. 0.95% Si steel had a similar high combination of tensile strength and impact toughness to 0.55% Si steel, and especially 0.95% Si steel exhibited an excellent combination of tensile strength and stretch-flangeability.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The influence of polypropylene fibers has been studied in different proportioning and fiber aspect ratios to improve physical and mechanical properties of fiber-reinforced concretes. Fibers are used in two different lengths (12 mm and 19 mm) and proportions (0.1% and 0.3%) in concrete mixture design. Hardened concrete properties, such as 7- and 28-day compressive strength, splitting tensile strength, flexural strength, water and air absorption, and restrained shrinkage cracking were evaluated.

No statistically significant effects were observed for polypropylene fibers on the compressive strength of concrete, while toughness indexes, splitting tensile and flexural strength and durability parameters showed an increase in the presence of polypropylene fibers. Increased fiber availability (fiber aspect ratio) in the concrete matrix, in addition to the ability of longer polypropylene fibers to bridge on the micro cracks, are suggested as the reasons for the enhancement in mechanical properties. Finally, crack width in fiber-reinforced concrete is calculated analytically with fiber property variables (fiber type, length, diameter and proportion). Results are compared with experimental values and concluded that with an increase in fiber length and/or decrease in fiber diameter crack width, decrease significantly.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Low cost ferrite and bainite(FB) steels offer the prospect of high ultimate tensile strength combined with high hole expansion ratio. The enhanced strain hardening and formabilityof FB steels were primarily associated with the fine ferrite matrix, the low residual stresses and dislocation densityand compatible deformation between both phases.This overview describes the various techniques to produce FB steels, and comparestheresulting microstructure, tensile propertiesand tretchflangeabilitywith conventional HSLA and DP steels.A new generation of ultrafine ferrite and nano-scalebainiteautomotive steelsisunder development forthe futuredemands of extremely high strength and ductilitythroughthe fabricationtechnologiesinvolvingphase transformationsandplastic deformation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As-cast AZ80 Mg alloy contains α-Mg, partially divorce eutectic of α and γ (Mg 17Al 12), fully divorce eutectic of α and γ, and lamellar eutectic of α and γ phases. During homogenization, second phase (γ-Mg 17Al 12) gets dissolved can change the mechanical properties. Therefore, the aim of the present work is to bring out the kinetics of dissolution of γ phase and evaluate its effect on mechanical properties. Microstructure evolution during homogenization was investigated as a function of time for 0.5 to 100 h and at the temperatures of 400° and 439°C. In as-cast state, this material was found to contain 70% α-Mg and 30% eutectic phase. With increasing homogenization time, dissolution of lamellar eutectic occurs first which is followed by dissolution of fully divorce eutectic and partially divorce eutectic. The dissolution kinetics of γ phase was analyzed based on the decrease in its volume fraction as a function of time. The time exponent for dissolution was found to be 0.38 and the activation energy for the dissolution of γ phase was found to be 84.1 kJ/mol. This dissolution of γ phase leads to decrease in hardness and tensile strength with increase in homogenization time.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rule of similarity and latex compounding techniques were combined for the first time to prepare natural rubber/nanosilica (NR/SiO2) nanocomposite with core-shell nanosilica-poly (methyl methacrylate) (SiO 2-PMMA) particles and PMMA-modified natural rubber matrix (NR-PMMA). The microstructure of SiO2 and nanocomposites with different SiO 2 contents was characterized by fourier transform infrared spectroscopy (FTIR); the morphology of nanocomposites was investigated with scanning electron microscopy (SEM); the tensile strength was characterized by tensile testing machine and the thermal stability of composites was studied by thermal gravimetric analysis. Results showed that PMMA chains have successfully grafted onto the surface of SiO2, and the core-shell SiO 2-PMMA nanoparticles and NR-PMMA latex have been perfectly incorporated. SiO2-PMMA nanoparticles are evenly distributed over the NR matrix with an average size in the range of 60-100 nm at the low content (SiO2? 3 wt%), while aggregations are apparently observed when 5 wt% SiO2 is loaded. In addition, NR/SiO2 composities possess a considerable improvement in ageing resistance compared with the pure NR. The tensile strength of composite increases from 6.99 to 12.72 MPa, reaching the highest value at a 0.5 wt% SiO2 loading, and then the figure decreases gradually because of the aggregation of SiO2 nanoparticles. It is anticipated that the reported process is to provide a simple and economic way for preparing NR composites.