54 resultados para Spatial scales


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The African unstriped ground squirrel (Xerus rutilus) is widely dispersed across various habitats in East Africa and hence encounters a diverse suite of predators and plant communities. It is not known how different habitats and plant characteristics affect the foraging behaviour of X. rutilus. We used giving-up densities (GUDs) as a measure of foraging efficiency to explore the foraging costs of environmental heterogeneity. To determine foraging efficiency across spatial scales, we established food patches in two microhabitats (open and cover), which were nested within three habitats (koppie, edge and bushland). When foraging in a cover microhabitat, foraging efficiency decreased away from the koppie, but when in the open microhabitat, foraging efficiency was lowest near the koppie edge. Second, to determine foraging efficiency with common plant toxins, we presented the squirrels with seeds soaked in either tannic acid, oxalic acid or distilled water (control). Foraging efficiency did not differ between tannic-treated and control seeds, but oxalic-treated seeds had higher GUDs. Overall, our results suggest that X. rutilus is a remarkably efficient forager across multiple axes of environmental heterogeneity, which may have intriguing consequences for the ecological community.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In a replicated whole-lake experiment, we (a) tested for the existence of a flexible habitat shift in response to predator presence in age-0 rainbow trout (Oncorhynchus mykiss) at risk of cannibalism and (b) evaluated the population-level consequences of habitat shifts in terms of growth and survival over their first growing season. Daphnid food and adult trout predators were substantially more abundant in pelagic than in littoral habitats. Age-0 trout used all habitats in populations without adult trout predators, whereas age-0 trout were observed only in the less profitable littoral habitat in populations with adult trout. Consequently, mean fall mass of age-0 trout in the presence of predators was almost half that observed in populations without adult trout. Despite the shift in habitat use, age-0 trout experienced 90% mortality when adult trout predators were present, in comparison to only 36% mortality when absent. We conclude that the commonly observed habitat shifts by fish at risk of predation, observed at smaller scales, do in fact occur at the whole-system scale over long time intervals. These results suggest that fish are able to perceive risk at large spatial scales and thus take advantage of profitable (but normally risky) habitats when predators are absent, or move to less profitable refuge habitats when predators are present.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Copenhagen School's notion of securitization is widely recognised as an important theoretical innovation in the conceptualisation of security, not least for its potential for including a range of actors and spatial scales beyond the state. However, its empirical utility remains more open to question due to a lack of reflexivity regarding local socio-cultural contexts, narrow focus on speech and inherently retrospective nature. Drawing on fieldwork conducted by the author in Kyrgyzstan between September 2005 and June 2006, this paper will examine the implications of these limitations for conducting empirical research on "security" logistically and methodologically. Centrally, the question of how “security” can be researched in the field will be discussed. Consideration will be given to the researcher’s role in talking “security” and how “security” can effectively be located and explicated through the creation of ethnomethodological “thick description”. Issues of contingency, multiple voices and power loci, and inter-cultural translation will be addressed. The paper will conclude with a consideration of how local knowledge can be used to inform our research and help find ways to bridge the divide between the field and theory.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Understanding how habitat fragmentation affects population processes (e.g. dispersal) at different spatial scales is of critical importance to conservation. We assessed the effects of habitat fragmentation on dispersal and regional and fine-scale population structure in a currently widespread and common cooperatively breeding bird species found across south-eastern Australia, the superb fairy-wren Malurus cyaneus. Despite its relative abundance and classification as an urban tolerant species, the superb fairy-wren has declined disproportionately from low tree-cover agricultural landscapes across the Box-Ironbark region of north-central Victoria, Australia. Loss of genetic connectivity and disruption to its complex social system may be associated with the decline of this species from apparently suitable habitat in landscapes with low levels of tree cover. To assess whether reduced structural connectivity has had negative consequences for genetic connectivity in the superb fairy-wren, we used a landscape-scale approach to compare patterns of genetic diversity and gene flow at large (landscape/regional) and fine (site-level) spatial scales. In addition, using genetic distances, for each sex, we tested landscape models of decreased dispersal through treeless areas (isolation-by-resistance) while controlling for the effect of isolation-by-distance. Landscape models indicated that larger-scale gene flow across the Box-Ironbark region was constrained by distance rather than by lack of structural connectivity. Nonetheless, a pattern of isolation-by-resistance for males (the less-dispersive sex) and lower genetic diversity and higher genetic similarity within sites in low-cover fragmented landscapes indicated disruption to fine-scale gene flow mechanisms and/or mating systems. Although loss of structural connectivity did not appear to impede gene flow at larger spatial scales, fragmentation appeared to affect fine-scale population processes (e.g. local gene flow mechanisms and/or mating systems) adversely and may contribute to the decline of superb fairy-wrens in fragmented landscapes in the Box-Ironbark region. © 2012 British Ecological Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This review addresses how the ecosystem approach to aquaculture (EAA) can optimize aquaculture-fisheries interactions considering different spatial scales from farm, aquaculture zone and watershed through to the global market. Aquaculture and fisheries are closely related subsectors with frequent interactions, largely due to the sharing of common ecosystems and natural resources. Interactions are also born from the flow of biomass from fisheries to aquaculture through fish-based feeds (e.g. fishmeal, fish oil and trashfish), through the collection of wild seed and brookstock, and genetic resources and biomass transfer from aquaculture to fisheries through culture-based fisheries (CBF) and escapees. Negative effects include modification of habitats affecting fisheries resources and activities (e.g. mangrove clearing for shrimp ponds, seabed disturbances through anchoring of aquaculture cages or pens, damage to seagrasses, alteration to reproductive habitats, biodiversity loss). Eutrophication of waterbodies due to excess nutrient release leading to anoxia and fish mortality can also impact negatively on biodiversity and wild fish stocks. Release of diseases and chemicals also imposes some threats on fisheries. Yet there could be beneficial impacts; for example, aquaculture is increasingly contributing to capture fisheries through CBF and could contribute to restore overfished stocks. Aquaculture can offer alternative livelihoods to fisherfolk, providing increased opportunity to them and also to their families, and especially to women. Aquaculture-increased production and marketing can also enhance and indirectly improve processing and market access to similar fishery products. The ecosystem approach to aquaculture (EAA) is a strategy for the management of the sector that emphasizes intersectoral complementarities by taking into account the interactions between all the activities within ecologically meaningful boundaries and acknowledging the multiple services provided by ecosystems. The main objective of this review is to understand the status of aquaculture-fisheries interactions associated with the biological, technological, social, economic, environmental, policy, legal and other aspects of aquaculture development and to analyze how these interactions are or could be addressed with an EAA. Therefore, the review involves aspects of scoping, identification of issues, prioritizing, devising management tools and plans for minimizing negative effects and optimizing positive ones within the context of social-ecological resilience, at different relevant geographical scales. Many of the management measures suggested in this review must involve not only EAA but also an ecosystem approach to fisheries (EAF), especially to deal with issues such as fishery of wild seed and the management of fisheries to produce fishmeal/oil for pelleted feeds or for direct feeding with wet fish. The implementation of EAA and EAF should help to overcome the sectoral and intergovernmental fragmentation of resource management efforts and assist in the development of institutional mechanisms and private-sector arrangements for effective coordination among various sectors active in ecosystems in which aquaculture and fisheries operate and between the various levels of government. Ecosystem-based management involves a transition from traditional sectoral planning and decision-making to the application of a more holistic approach to integrated natural resource management in an adaptive manner.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wide-ranging marine central place foragers often exhibit foraging site fidelity to oceanographic features over differing spatial scales (i.e., localized coastal upwellings and oceanic fronts). Few studies have tested how the degree of site fidelity to foraging areas varies in relation to the type of ocean features used. In order to determine how foraging site fidelity varied between continental shelf and oceanic foraging habitats, 31 lactating New Zealand fur seals (Arctocephalus australis forsteri1) were satellite tracked over consecutive foraging trips (14–108 d). Thirty-seven foraging trips were recorded from 11 females that foraged on the continental shelf, in a region associated with a coastal upwelling, while 65 foraging trips were recorded from 20 females that foraged in oceanic waters. There were no significant differences in the mean bearings (to maximum distance) of individual's consecutive foraging trips, suggesting individual fidelity to foraging areas. However, overlap in area and time spent in area varied considerably between continental shelf and oceanic foragers. Females that foraged on the continental shelf had significantly greater overlap in consecutive foraging trips when compared to females that foraged in oceanic waters (overlap in 5 × 5 km grid cells visited on consecutive trips 55.9%± 20.4% and 13.4%± 7.6%, respectively). Females that foraged on the continental shelf also spent significantly more time within the same grid cell than females that foraged in oceanic waters (maximum time spent in 5 × 5 km grid cells: 14%± 5% and 4%± 2%, respectively). This comparatively high foraging site fidelity may reflect the concentration of productivity associated with a coastal upwelling system, the Bonney Upwelling. Lower foraging site fidelity recorded by seals that foraged in oceanic waters implies a lower density/larger scale habitat, where prey are more dispersed or less predictable at fine scales, when compared to the continental shelf region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent advances in telemetry technology have created a wealth of tracking data available for many animal species moving over spatial scales from tens of meters to tens of thousands of kilometers. Increasingly, such data sets are being used for quantitative movement analyses aimed at extracting fundamental biological signals such as optimal searching behavior and scale-dependent foraging decisions. We show here that the location error inherent in various tracking technologies reduces the ability to detect patterns of behavior within movements. Our analyses endeavored to set out a series of initial ground rules for ecologists to help ensure that sampling noise is not misinterpreted as a real biological signal. We simulated animal movement tracks using specialized random walks known as Lévy flights at three spatial scales of investigation: 100-km, 10-km, and 1-km maximum daily step lengths. The locations generated in the simulations were then blurred using known error distributions associated with commonly applied tracking methods: the Global Positioning System (GPS), Argos polar-orbiting satellites, and light-level geolocation. Deviations from the idealized Lévy flight pattern were assessed for each track after incrementing levels of location error were applied at each spatial scale, with additional assessments of the effect of error on scale-dependent movement patterns measured using fractal mean dimension and first-passage time (FPT) analyses. The accuracy of parameter estimation (Lévy μ, fractal mean D, and variance in FPT) declined precipitously at threshold errors relative to each spatial scale. At 100-km maximum daily step lengths, error standard deviations of ≥10 km seriously eroded the biological patterns evident in the simulated tracks, with analogous thresholds at the 10-km and 1-km scales (error SD ≥ 1.3 km and 0.07 km, respectively). Temporal subsampling of the simulated tracks maintained some elements of the biological signals depending on error level and spatial scale. Failure to account for large errors relative to the scale of movement can produce substantial biases in the interpretation of movement patterns. This study provides researchers with a framework for understanding the limitations of their data and identifies how temporal subsampling can help to reduce the influence of spatial error on their conclusions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The spatial scales of population genetic structure in three species of Antarctic echinoderm, Sterechinus neumayeri, Abatus nimrodi and Abatus ingens was quantified using mitochondrial sequences and a novel set of microsatellite markers. Reduced fertilisation success in S. neumayeri resulting from increasing temperature and decreasing salinity was also identified.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Predation and fire shape the structure and function of ecosystems globally. However, studies exploring interactions between these two processes are rare, especially at large spatial scales. This knowledge gap is significant not only for ecological theory, but also in an applied context, because it limits the ability of landscape managers to predict the outcomes of manipulating fire and predators. We examined the influence of fire on the occurrence of an introduced and widespread mesopredator, the red fox (Vulpes vulpes), in semi-arid Australia. We used two extensive and complimentary datasets collected at two spatial scales. At the landscape-scale, we surveyed red foxes using sand-plots within 28 study landscapes - which incorporated variation in the diversity and proportional extent of fire-age classes - located across a 104 000 km2 study area. At the site-scale, we surveyed red foxes using camera traps at 108 sites stratified along a century-long post-fire chronosequence (0-105 years) within a 6630 km2 study area. Red foxes were widespread both at the landscape and site-scale. Fire did not influence fox distribution at either spatial scale, nor did other environmental variables that we measured. Our results show that red foxes exploit a broad range of environmental conditions within semi-arid Australia. The presence of red foxes throughout much of the landscape is likely to have significant implications for native fauna, particularly in recently burnt habitats where reduced cover may increase prey species' predation risk.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Animal migrations span the globe, involving immense numbers of individuals from a wide range of taxa. Migrants transport nutrients, energy, and other organisms as they forage and are preyed upon throughout their journeys. These highly predictable, pulsed movements across large spatial scales render migration a potentially powerful yet underappreciated dimension of biodiversity that is intimately embedded within resident communities. We review examples from across the animal kingdom to distill fundamental processes by which migratory animals influence communities and ecosystems, demonstrating that they can uniquely alter energy flow, food-web topology and stability, trophic cascades, and the structure of metacommunities. Given the potential for migration to alter ecological networks worldwide, we suggest an integrative framework through which community dynamics and ecosystem functioning may explicitly consider animal migrations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

 Aim: The purpose of this study was to create predictive species distribution models (SDMs) for temperate reef-associated fish species densities and fish assemblage diversity and richness to aid in marine conservation and spatial planning. Location: California, USA. Methods: Using generalized additive models, we associated fish species densities and assemblage characteristics with seafloor structure, giant kelp biomass and wave climate and used these associations to predict the distribution and assemblage structure across the study area. We tested the accuracy of these predicted extrapolations using an independent data set. The SDMs were also used to estimate larger scale abundances to compare with other estimates of species abundance (uniform density extrapolation over rocky reef and density extrapolations taking into account variations in geomorphic structure). Results: The SDMs successfully modelled the species-habitat relationships of seven rocky reef-associated fish species and showed that species' densities differed in their relationships with environmental variables. The predictive accuracy of the SDMs ranged from 0.26 to 0.60 (Pearson's r correlation between observed and predicted density values). The SDMs created for the fish assemblage-level variables had higher prediction accuracies with Pearson's r values of 0.61 for diversity and 0.71 for richness. The comparisons of the different methods for extrapolating species densities over a single marine protected area varied greatly in their abundance estimates with the uniform extrapolation (density values extrapolated evenly over the rocky reef) always estimating much greater abundances. The other two methods, which took into account variation in the geomorphic structure of the reef, provided much lower abundance estimates. Main conclusions: Species distribution models that combine geomorphic, oceanographic and biogenic habitat variables can reliably predict spatial patterns of species density and assemblage attributes of temperate reef fishes at spatial scales of 50 m. Thus, SDMs show great promise for informing spatial and ecosystem-based approaches to conservation and fisheries management. © 2015 John Wiley

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The new found ability to measure physical attributes of the marine environment at high resolution across broad spatial scales has driven the rapid evolution of benthic habitat mapping as a field in its own right. Improvement of the resolution and ecological validity of seafloor habitat distribution models has, for the most part, paralleled developments in new generations of acoustic survey tools such as multibeam echosounders. While sonar methods have been well demonstrated to provide useful proxies of the relatively static geophysical patterns that reflect distribution of benthic species and assemblages, the spatially and temporally variable influence of hydrodynamic energy on habitat distribution have been less well studied. Here we investigate the role of wave exposure on patterns of distribution of near-shore benthic habitats. A high resolution spectral wave model was developed for a 624 km2 site along Cape Otway, a major coastal feature of western Victoria, Australia. Comparison of habitat classifications implemented using the Random Forests algorithm established that significantly more accurate estimations of habitat distribution were obtained by including a fine-scale numerical wave model, extended to the seabed using linear wave theory, than by using depth and seafloor morphology information alone. Variable importance measures and map interpretation indicated that the spatial variation in wave-induced bottom orbital velocity was most influential in discriminating habitat classes containing the canopy forming kelp Ecklonia radiata, a foundation kelp species that affects biodiversity and ecological functioning on shallow reefs across temperate Australasia. We demonstrate that hydrodynamic models reflecting key environmental drivers on wave-exposed coastlines are important in accurately defining distributions of benthic habitats. This study highlights the suitability of exposure measures for predictive habitat modeling on wave-exposed coastlines and provides a basis for continuing work relating patterns of biological distribution to remotely-sensed patterns of the physical environment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As oyster fishing continues to degrade reef habitat along the US Atlantic coast, oyster reefs appear increasingly fragmented on small spatial scales. In outdoor mesocosms, experiments tested how consumption of representatives of 4 different bivalve guilds by each of 3 mesopredators varies between continuous and fine-scale patches of oyster reef habitat. The mesopredator that fed least (stone crab) exhibited no detectable change in consumption on any bivalve (ribbed mussel, bay scallop, hard clam, and 3 size classes of eastern oyster). Consumption of bay scallops by both blue crabs and sheepshead fish was greater in small patches than in continuous oyster reef habitat. Of the bivalve guilds tested, only the scallop possesses swimming motility sufficient to reduce predation, an escape response that would likely leave the bivalve protected within structured habitat in larger continuous oyster reefs. Sheepshead consumed more small oysters in the continuous habitat than in the fine patches, while no other predator-prey interaction exhibited differential feeding as a function of habitat patchiness. Consequently, predation by mesopredators on bivalves can vary with the scale of oyster reef patchiness, but this process may depend upon the bivalve guild. Understanding the role of habitat patchiness on fine scales may be increasingly important in view of the declines in apex predatory sharks leading to mesopredator release, and global climate change directly and indirectly enhancing stone crab abundances, thereby increasing potential predation on bivalves.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Seagrasses are ecosystem engineers that offer important habitat for a large number of species and provide a range of ecosystem services. Many seagrass ecosystems are dominated by a single species, with research showing that genotypic diversity at fine spatial scales plays an important role in maintaining a range of ecosystem functions. However, for most seagrass species, information on fine-scale patterns of genetic variation in natural populations is lacking. In this study, we use a hierarchical sampling design to determine the levels of genetic and genotypic diversity at different spatial scales (centimeters, meters, kilometers) in the Australian seagrass Zostera muelleri. Our analysis shows that at fine spatial scales (<1 m), levels of genotypic diversity are relatively low (R(Plots) = 0.37 ± 0.06 SE), although there is some intermingling of genotypes. At the site (10’s m) and meadow location (km) scale, we found higher levels of genotypic diversity (R(sites) = 0.79 ± 0.04 SE; R(Locations) = 0.78 ± 0.04 SE). We found some sharing of genotypes between sites within meadows, but no sharing of genotypes between meadow locations. We also detected a high level of genetic structuring between meadow locations (FST = 0.278). Taken together, our results indicate that both sexual and asexual reproductions are important in maintaining meadows of Z. muelleri. The dominant mechanism of asexual reproduction appears to occur via localized rhizome extension, although the sharing of a limited number of genotypes over the scale of 10’s of meters could also result from the localized dispersal and recruitment of fragments. The large number of unique genotypes at the meadow scale indicates that sexual reproduction is important in maintaining these populations, while the high level of genetic structuring suggests little gene flow and connectivity between our study sites. These results imply that recovery from disturbances will occur through both sexual and asexual regeneration, but the limited connectivity at the landscape scale implies that recovery at meadow-scale losses is likely to be limited.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recovery from disturbance is a key element of ecosystem persistence, and recovery can be influenced by large-scale regional differences and smaller local-scale variations in environmental conditions. Seagrass beds are an important yet threatened nearshore habitat and recover from disturbance by regrowth, vegetative extension and dispersive propagules. We described recovery pathways from small-scale disturbances in the seagrass Zostera nigricaulis in Port Phillip Bay, a large embayment in southeastern Australia, and tested whether these pathways differed between 5 regions with different hydrodynamic conditions and water quality, and between sites within those regions. Recovery pathways were broadly consistent. When aboveground biomass was removed, recovery, defined as the point at which disturbed areas converged with undisturbed controls, took from 2 to 8 mo, but when we removed above-and below-ground biomass, it took between 2 and 13 mo. There was no evidence of recovery resulting from sexual reproduction at any sites regardless of the presence of seeds in the sediment or flower production. We found no differences in recovery at the regional scale, but we found substantial differences between local sites. At some sites, rapid recovery occurred because seagrasses grew quickly, but at others, apparent recovery occurred because regrowth coincided with overall declines in cover of undisturbed areas. Recovery time was unrelated to seagrass canopy height, biomass, percentage cover, stem density, seed bank density, epiphyte cover or sediment organic matter in seagrass adjacent to disturbance experiments. This study highlights the importance of understanding fine-scale variation in local recovery mechanisms, which may override or obscure any regional signal.