78 resultados para Softening


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A rapid method was used to study the effect of carbon content on the kinetics of post-deformation softening, t50, in Nb-steels. The hot deformation behaviour of austenite was not affected by carbon. However, the t50 was influenced by the carbon with different effects in different temperature regimes. At deformation temperatures above the non-recrystallization temperature, Tnr, carbon produced a small change in the softening behaviour. However, the t50 was significantly retarded with increasing carbon content at deformation temperatures lower than Tnr, due to Nb(C,N) precipitates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The deformation and recrystallization behaviour of a range of Nb microalloyed steels has been studied using hot torsion. This work focuses on the change from strain dependent to strain independent recrystallization behaviour as a function of the alloy content, initial microstructure and deformation conditions. It is found that there is a complex interaction between deformation, recrystallization and strain induced precipitation, which has significant implications for controlled rolling in hot strip and plate mills. The data also revealed that the pre-existing precipitates did not influence the behaviour of post deformation softening.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inspection of pre-polished surfaces of Mg–3Al–1Zn hot-rolled plate following 5% uniaxial compression revealed a distinctive heterogeneous deformation pattern. The pattern differed depending on the face examined. The greater share of the strain was born by regions characterized by grains considerably finer than the average. These regions displayed a favourable alignment for basal slip and were probably formed by shear banding during previous rolling. It is clear that local orientation softening leads to inhomogeneous deformation despite local grain size-hardening and twin activation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnesium and its alloys do not in general undergo the same extended range of plasticity as their competitor structural metals. The present work presents part II of a study that examines some of the roles deformation twinning might play in the phenomenon. A series of tensile and compression tests results are reported for common wrought alloys: AZ31, ZK60 and ZM20. These data are combined with EBSD analysis and simple flow stress models to argue the following: (i) that “contraction” double twinning (which enables contraction along the c axis) can decrease the uniform elongation, and (ii) that compression double twinning can also account for shear failure at low strains. The last of these is described as a combined consequence of strain softening of the continuum and the local generation of twin sized voids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnesium and its alloys do not in general undergo the same extended range of plasticity as their competitor structural metals. The present work is part I of a study that examines some of the roles deformation twinning might play in the phenomenon. A series of tensile test results are reported for the common wrought alloy AZ31. These data are employed in conjunction with a simple constitutive model to argue that View the MathML source twinning (which gives extension along the c-axis) can increase the uniform elongation in tensile tests. This effect appears to be similar to that seen in Ti, Zr and Cu–Si and in the so called TWIP phenomenon in steel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The method of Fields and Backofen has been commonly used to reduce the data obtained by hot torsion test into flow curves. The method, however, is most suitable for materials with monotonic strain hardening behaviour. Other methods such as Stüwe’s method, tubular specimens, differential testing and the inverse method, each suffer from similar drawbacks. It is shown in the current work that for materials with multiple regimes of hardening any method based on an assumption of constant hardening indices introduces some errors into the flow curve obtained from the hot torsion test. Therefore such methods do not enable accurate prediction of onset of recrystallisation where slow softening occurs. A new method to convert results from the hot torsion test into flow curves by taking into account the variation of constitutive parameters during deformation is presented. The method represents the torque twist data by a parametric linear least square model in which Euler and hyperbolic coefficients are used as the parameters. A closed form relationship obtained from the mathematical representation of the data is employed next for flow stress determination. Two different solution strategies, the method of normal equations and singular value decomposition, were used for parametric modelling of the data with hyperbolic basis functions. The performance of both methods is compared. Experimental data obtained by FHTTM, a flexible hot torsion test machine developed at IROST, for a C–Mn austenitic steel was used to demonstrate the method. The results were compared with those obtained using constant strain and strain rate hardening characteristics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ferrite grain/subgrain structures evolution during the extended dynamic softening of a plain low carbon steel was investigated throughout the large strain warm deformation by hot torsion. Microstructural analysis with electron back-scattering diffraction (EBSD) scanning electron microscope (FEG/SEM) was carried out on the ferrite microstructural parameters. The results showed that the warm flow stress–strain curves are similar to those affected only by dynamic softening and an extended warm flow softening is seen during large strain deformation up to 30. Furthermore, with an increase in strain up to ~ vert, similar1 the grain size of ferrite, misorientation angle and fraction of high-angle boundaries gradually decrease and fraction of low-angle boundaries increases. With a further increase in the strain beyond ~, vert, similar2, these parameters remain approximately unchanged. No evidence of discontinuous dynamic recrystallisation involving nucleation and growth of new grains was found within ferrite. Therefore, the dynamic softening mechanism observed during large strain ferritic deformation is explained by continuous dynamic recrystallization (CDRX).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the current work, constitutive models are developed to describe the cyclic hardening and softening led by the strain path chaneg.  The contribution of deformation conditions such as drawing and extrusion speed, cyclic rotating angle on the drawing and extrusion force will be investigated.  The development of such constitutive models will provide insight into the optimization of operation conditions to explore the potential of industrial applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose – The purpose of this paper is to explore the relationship between anti-money laundering (“AML”) and combating of financing of terrorism (“CFT”) customer due diligence (“CDD”) measures in the financial services industry, and exclusion from financial services.
Design/methodology/approach – An introduction to the concept of financial exclusion is provided as well as an overview of international AML/CFT CDD standards. The paper highlights a softening of national CDD measures in South Africa and the UK to lessen the impact on financial exclusion.
Findings – Countries should consider the impact that CDD requirements may have on financial exclusion when they design their AML/CFT systems.
Research limitations/implications – Multi-discilinary research is required to improve the understanding of the broader interaction between AML/CFT objectives, financial exclusion and economic development, especially in countries with a large informal economy.
Practical implications – CDD requirements may unnecessarily exacerbate financial exclusion if they are not formulated with care to reflect the reality of the particular country setting.
Originality/value – The paper offers insights into the international standards resulting to the identification of clients and the experiences in the UK and South Africa regarding the implementation of these standards on financial exclusion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to improve the understanding of the dynamic and post-dynamic recrystallization behaviours of AISI 304 austenitic stainless steel, a series of hot torsion test have been performed under a range of deformation conditions. The mechanical and microstructural features of dynamic recrystallization (DRX) were characterized to compare and contrast them with those of the post-dynamic recrystallization. A necklace type of dynamically recrystallized microstructure was observed during hot deformation at 900 °C and at a strain rate of 0.01 s−1. Following deformation, the dependency of time for 50% recrystallization, t50, changed from “strain dependent” to “strain independent” at a transition strain (ε*), which is significantly beyond the peak. This transition strain was clearly linked to the strain for 50% dynamic recrystallization during deformation. The interrelations between the fraction of dynamically recrystallized microstructure, the evolution of post-dynamically recrystallized microstructure and the final grain size have been established. The results also showed an important role of grain growth on softening of deformed austenite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The postdeformation recrystallization behavior of a hot-deformed austenitic stainless steel was investigated based on the first part of this study, in which the microstructure development during hot deformation and, in particular, the evolution of dynamic recrystallization (DRX), was studied. The effect of different parameters such as strain, strain rate, and temperature were examined. The dependency of the time for 50 pct softening, t 50, changed from “strain dependent” to “strain independent” at a transition strain (ε*) that was in the steady-state area of the hot deformation flow curve. The fully recrystallized microstructure showed a similar transition in strain sensitivity. However, this occurred at stains greater than ε*. A mathematical model was developed to predict the transition strain under different deformation conditions. Microstructural measurements show that the transition strain corresponds to approximately 50 pct DRX in the deformed structure at the point of unloading.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The scope of this study was to examine the effects of plane strain prestrain, induced via cold-rolling, and subsequent automotive paint bake hardening cycle on both tensile and fatigue properties of a hot rolled TRIP780 multiphase steel. Strain-life data has been generated for as-received (0% prestrain), 10% and 20% prestrained samples, in both baked and unbaked conditions. Cold rolling  increased the number of strain reversals to failure at high cyclic strain amplitudes with no effect at low strain amplitudes. Bake hardening increased the number of reversals to failure at high cyclic strain amplitudes. The prestrained material exhibited partial cyclic softening, with some residual strength increase. The residual strength increase was attributed to the austenite to martensite transformation that occurred during the prestraining process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Equi-channel angular pressing (ECAP) of a Pb–Sn eutectic alloy up to six passes in a T-shaped die, rather than a conventional L-shaped die, was studied for grain refinement. The effect of ECAP on the hardness and tensile properties was studied. Microstructure predominately changed in the early part of the ECAP process and became equiaxed and uniformly distributed in both the longitudinal and the transverse sections after four passes. There occurred substantial softening over the first two passes—hardness of 10 Hv, yield strength of 14.2 MPa and tensile strength of 16.3 MPa in the as-cast condition decreased upon two passes to 6 Hv, 9.7 MPa and 13.0 MPa, respectively. The ductility (% elongation) increased drastically from <50% in the as-cast condition to 150% upon two passes, and further increased to 230% after four passes. Various tensile properties and concurrent microstructural evolution were used to develop a mutual relationship among them.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The widespread introduction of multiphase sheet steels in the automotive industry has led to considerable interest in the fatigue properties of these materials. The different microstructural phases within matelials such as TRIP steels can influence the fatigue behaviour due to the manner in which the cyclic strain is accommodated within these phases. In this study fully reversed straincontrolled fatigue tests were perfonnrmed on a commercially-produced uncoated TRIP 780 steel both in the as-received and 20 % prestrained condition. The pre-strained TRIP steel showed significant cyclic softening at higher strain amplitudes, whereas some initial work hardening was observed at lower strain amplitudes before cyclic softening. The cyclic stabilised strength of the pre-strained TRIP steel was independent of strain amplitude, while the cyclic stabilised strength of the as-received TRIP steel increased with strain amplitude. Transmission Electron Microscopy TEM was used to examine the effect of the cyclic deformation on the microstructure of the different conditions, with the differences in fatigue behaviour explained based on the differences in the deformation structure formed within the steel (i.e. dislocation density and sub-structure and microband formation).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fatigue properties of multiphase steels are an important consideration in the automotive industry. The different microstructural phases present in these steels can influence the strain life and cyclic stabilized strength of the material due to the way in which these phases accommodate the applied cyclic strain. Fully reversed strain-controlled low-cycle fatigue tests have been used to determine the mechanical fatigue performance of a dual-phase (DP) 590 and transformation-induced plasticity (TRIP) 780 steel, with transmission electron microscopy (TEM) used to examine the deformed microstructures. It is shown that the higher strain life and cyclic stabilized strength of the TRIP steel can be attributed to an increased yield strength. Despite the presence of significant levels of retained austenite in the TRIP steel, both steels exhibited similar cyclic softening behavior at a range of strain amplitudes due to comparable ferrite volume fractions and yielding characteristics. Both steels formed low-energy dislocation structures in the ferrite during cyclic straining.