76 resultados para Power system automation


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A novel algorithm, immune genetic algorithm (IGA) is proposed for reactive power optimization of power system. While retaining excellent characteristics of genetic algorithm (GA), through imitating the biological immune system, the algorithm evaluates and selects the optimal solutions by the affinities between antigens and antibodies. With the regulation of the activating and suppressing of antibodies, IGA can achieve the dynamic balance between individual diversity and population convergence, and avoid getting into the local optimal solution. The proposed IGA is applied to the IEEE 30-bus system, and the results show that it is superior to the GA with good population convergence and fast computing speed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Artificial neural networks have a good potential to be employed for fault diagnosis and condition monitoring problems in complex processes. In this paper, the applicability of the fuzzy ARTMAP (FAM) neural network as an intelligent learning system for fault detection and diagnosis in a power generation plant is described. The process under scrutiny is the circulating water (CW) system, with specific attention to the conditions of heat transfer and tube blockage in the CW system. A series of experiments has been conducted systematically to investigate the effectiveness of FAM in fault detection and diagnosis tasks. In addition, a set of domain rules has been extracted from the trained FAM network so that its predictions can be explained and justified. The outcomes demonstrate the benefits of employing FAM as an intelligent fault detection and diagnosis tool with an explanatory capability for monitoring and diagnosing complex processes in power generation plants.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This letter presents a novel approach to the load-frequency control (LFC) of interconnected power systems. Based on functional observers theory, quasi-decentralized functional observers (QDFOs) are designed to implement any given global PI state feedback controller. The designed functional observers are decoupled from each other and also of low-order; thus, they are cost effective and easy to implement. Although the proposed approach is applicable to N- area power systems, an example of a two-area interconnected power system with reheat thermal turbines is considered for simplicity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The phenomenal growth in economy experienced in developed countries throughout the 20th century has largely been driven by the availability of conventional energy sources for electricity generation. However, increased concern about fossil fuels and adverse effect of carbon dioxide emission in to atmosphere changed the conventional power system to a viable one by integrating renewable energy sources into the existing system. Among the Renewable Energy (RE) sources, wind energy is one of the fastest growing technologies in reducing the Green House Gas (GHG) emissions in to the atmosphere due to its continuous availability throughout a period. Hence, this paper discusses the performance of a wind-grid connected system in a semi-arid region by conducting a case study. Wilson promontory, one of the best locations for wind generation in Victoria is considered as a case study. Hybrid Optimization Model for Electric Renewable (HOMER) is used as a simulating tool for this analysis. This study also presents the influences of storage system in the proposed Hybrid Power System (HPS) allowing energy to be stored during higher generations or lower load demands. In addition this paper also discusses the major integration issues to facilitate the large scale wind energy into the grid for reliable power generation and distribution.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a nonlinear adaptive excitation control scheme to enhance the dynamic stability of multimachine power systems. The proposed controller is designed based on the adaptive backstepping technique where the mechanical power input to the generators and the damping coefficient of each generator are considered as unknown. These unknown quantities are estimated through the adaption laws. The adaption laws are obtained from the formulation of Lyapunov functions which guarantee the convergence of different physical quantities of generators such as the relative speed, terminal voltage, and electrical power output. The proposed scheme is evaluated by applying a three-phase short-circuit fault at one of the key transmission lines in an 11-bus test power system and compared with an existing backstepping controller and conventional power system stabilizer (CPSS). Simulation results show that the proposed scheme is much more effective than existing controllers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Electric vehicles (EVs) have recently gained much popularity as a green alternative to fossil-fuel cars and a feasible solution to reduce air pollution in big cities. The use of EVs can also be extended as a demand response tool to support high penetration of renewable energy (RE) sources in future smart grid. Based on the certainty equivalent adaptive control (CECA) principle and a customer participation program, this paper presents a novel control strategy using optimization technique to coordinate not only the charging but also the discharging of EV batteries to deal with the intermittency in RE production. In addition, customer charging requirements and schedules are incorporated into the optimization algorithm to ensure customer satisfaction, and further improve the control performance. The merits of this scheme are its simplicity, efficiency, robustness and readiness for practical applications. The effectiveness of the proposed control algorithm is demonstrated by computer simulations of a power system with high level of wind energy integration.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a load frequency control scheme using electric vehicles (EVs) to help thermal turbine units to provide the stability fluctuated by load demands. First, a general framework for deriving a state-space model for general power system topologies is given. Then, a detailed model of a four-area power system incorporating a smart and renewable discharged EVs system is presented. The areas within the system are interconnected via a combination of alternating current/high voltage direct current links and thyristor controlled phase shifters. Based on some recent development on functional observers, novel distributed functional observers are designed, one at each local area, to implement any given global state feedback controller. The designed observers are of reduced order and dynamically decoupled from others in contrast to conventional centralized observer (CO)-based controllers. The proposed scheme can cope better against accidental failures than those CO-based controllers. Extensive simulations and comparisons are given to show the effectiveness of the proposed control scheme.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Green energy targets for coming decades advocates high penetration of wind energy in main energy matrix which also pose incendiary threat to stability and reliability of modern electric grid if their dynamic performance aspects are not assessed beforehand. Considering increasing interest in dynamic performance along with ancillary service assessment related to frequency regulation, development of suitable generic modeling has gained high priority. This paper presents modeling of type 4 full converter wind turbine generator system suitable for frequency regulation focusing on active power control. Complete model is a modification of WECC generic model with additional aerodynamic and pitch control model. Descriptions of individual sub models are presented and performance results are compared manufacturer specific GE type 4 WTG generic model by means of simulations in the MATLAB ® Power System Block set.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Over the past decade, the growing demand of Grid-connected photo voltaic (GCPV) system has been increasing due to an extensive use of renewable energy technologies for sustainable power generation and distribution. High-penetrated GCPV systems enhance the operation of the network by improving the voltage levels and reducing the active power losses along the length of the feeder. This paper aims to investigate the voltage variations and Total Harmonic Distortion (THD) of a typical GCPV system modelled in Power system simulator, PSS SINCAL with the change of level of PV integrations in a Low Voltage (LV) distribution network. Five different case studies are considered to investigate the impact of PV integrations on LV nodes and the corresponding voltage variations and harmonics. In addition, this paper also explores and benchmarks the voltage improvement techniques by implementing On Load Tap Changer (OLTC) with respective to the main transformer and addition of Shunt Capacitor (SC) at appropriate node points in LV network,

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Microgrid (MG) power system plays an important role to fulfill reliable and secure energy supply to critical loads of communities as well as for communities in remote area. Distributed Generation (DG) sources integrated in a MG provides numerous benefits, at the same time leads to power quality issues in the MG power distribution network. Power Quality (PQ) issue arises due to the integration of an intermittent nature of Renewable Energy (RE) sources with advanced Power Electronics (PE) converter technology. Also, presence of non-linear and unbalancing loads in MG seems to affect PQ of the energy supply in power distribution network. In this paper, PQ impacts like; power variation, voltage variation, Total Harmonic Distortion (THD), and Unbalance voltage level have been analysed in Low Voltage (LV) distribution network of typical MG power system model. In this study, development of MG model and PQ impact analysis through simulation has been done in PSS-Sincal software environment. Analysis results from the study can be used as a guideline for developing a real and independent MG power system with improved PQ conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Integration of solar PV and wind in to the distribution network is one of the most promising challenges of the modern power system networks to meet the growing demand of energy. Analysis of the effects of solar and wind intermittencies in the network are vital to maintain the power quality. Keeping this in view, this research paper focuses on impact analysis study of a typical power network with hybrid generation: solar PV and wind integration to quantify the level of impacts like power variation and voltage variation in the network through load flow analysis. Initially, a typical network model is developed using PSS-SINCAL and load profile analysis has been carried out based on the typical daily load profile and wind/solar profile to verify the power and voltage variations extensively in the network considering different scenarios. Results of this research analysis can be used as guidelines for utility grid to provide regulated and improved quality of energy supply by implementing appropriate planning of generation reserve and other control measures in the network

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Microgrid (MG) integrated with Distributed Generation (DG) provides several benefits like reliable, secure, and high efficient of energy supply, while minimizing power loss, deferring expansion of power distribution infrastructures, and reduced carbon emission of energy supply etc. to the communities. Despite of the several benefits, there are several challenges existing due to the integration of different characteristics and technology of DG sources in MG network. Power Quality (PQ) issue is one of the main technical challenges in MG power system. In order to provide improved PQ of energy supply, it is necessary to analyse and quantify the PQ level in MG network. This paper investigates the detail of PQ impacts in a real MG network carried out through an experimental analysis. Voltage and frequency variations/deviations are analysed in both on-grid and off-grid mode of MG operation at varying generation and varying load conditions. Similarly un-balance voltage and current level in neutral are estimated at unbalanced PV generation and uneven load distribution in MG network. Also current and voltage THD are estimated at different PV power level. Finally the results obtained from the analysis are compared to that of Australian network standard level.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper proposes a new approach to design a robust adaptive backstepping excitation controller for multimachine power systems in order to reject external disturbances. The parameters which significantly affect the stability of power systems (also called stability sensitive parameters) are considered as unknown and the external disturbances are incorporated into the power system model. The proposed excitation controller is designed in such a way that it is adaptive to the unknown parameters and robust to external disturbances. The stability sensitive parameters are estimated through the adaptation laws and the convergences of these adaptation laws are obtained through the negative semi-definiteness of control Lyapunov functions (CLFs). The proposed controller not only provides robustness property against external disturbances but also overcomes the over-parameterization problem of stability sensitive parameters which usually appears in some conventional adaptive methods. Finally, the performance of the proposed controller is tested on a two-area four machine 11-bus power system by considering external disturbances under different scenarios and is compared to that of an existing nonlinear adaptive backstepping controller. Simulation results illustrate the robustness of the proposed controller over an existing one in terms of rejecting external disturbances.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a new approach to design excitation controller for power systems to enhance small-signal stability. Partial feedback linearization scheme is used to design the controller for a linearized power system model which transforms a part of this model into a new system through linear coordinate transformation. In this paper, the excitation control law as a function of state variables is determined from the dynamics of the partly transformed new system provided that the controller stabilizes the remaining dynamics of the system which are not transformed through feedback linearization. The stability of the remaining dynamics is also discussed in this paper. Since the proposed control scheme uses state variables as feedback, it is analogous to a linear quadratic regulator (LQR) based excitation controller. Therefore, the performance of the proposed scheme is evaluated on a single machine infinite bus (SMIB) system and compared to that of an LQR controller.