74 resultados para Photovoltaic Panels


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposed a new linear zero dynamic controller (LZDC) for

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes an optimal linear quadratic Gaussian (LQG) controller for D-STATCOM to improve the dynamic performance of distribution networks with photovoltaic generators. The controller is designed based on the H∞ norm of the uncertain system. The change in system model due to the variation of load compositions in the composite load is considered as an uncertain term in the design algorithm. The performance of the designed controller is demonstrated on a widely used test system. Simulation results indicate that the proposed controller can be a potential solution for improving the voltage stability of distribution networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we use monthly time series data for not less than 64 countries and a new sequential approach to test for purchasing power parity (PPP). The results are strong in that the evidence in favor of PPP is very weak. In fact, for the US-dollar-based exchange rates the evidence is basically non-existent. In order to eliminate the effect of the base currency, we also apply the sequential PPP test to all pairs of exchange rates, and find similarly weak evidence of PPP. However, for those rates where evidence is found, using a technical trading rule, we find evidence of significant profits. The predictability of the stationary pairs is therefore important for investors. © 2014 © 2014 Taylor & Francis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The abundance, availability, and climate-friendly characteristics of solar photovoltaic (PV) energy encourage nations around the globe to adopt it to assist in overcoming global warming as well as build a sustainable society for the future. The intermittent nature of solar energy generation and the associated power electronic inverters with connected consumer loads creates a number of potential challenges in integrating large-scale PV into the grid that affects power quality of the distribution networks. This paper investigates the impacts of varying PV integration into the grid through experimental and simulation studies. Initially, several experiments were conducted with varying PV penetration and load conditions using the Renewable Energy Integration Facility at CSIRO, Newcastle, Australia. Later, a simulation model was developed that mimics the experimental facility used at CSIRO to investigate the adverse impacts on integrating large-scale PV into the grid using the power system simulation software PSS Sincal. Experimental and simulation analyses clearly indicate that integration of PV into the grid causes power quality issues such as voltage instability, harmonic injection, and low power factor into the networks and the level of these impacts increases with the increase of PV penetration. © 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The advancement in solar photovoltaic (PV) technology, the cost and efficiency of PVs have encouraged users worldwide to adopt more and more PVs as it is free from greenhouse gas emissions and unlimited in nature. Integration of roof-top solar PV systems is currently emerging rapidly in Australia as the governments are giving attractive incentives and encouraging households to build a sustainable climate-friendly society for the future. The key major barriers to the integration of roof-top solar PV systems are the uncertainties in the performance of the low voltage distribution network due to the intermittent nature of solar PV sources. In this paper, a model was developed to investigate the potential technical impacts of integrating roof-top solar PV systems into the low voltage distribution network in a subtropical climate. The results show that integration of roof-top solar PV in the customer premises causes uncertainties such as voltage fluctuations, phase unbalance, distribution transformer overloading, reactive power compensation, and harmonic injections that detract the overall power quality of the typical distribution network. © 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a robust nonlinear controller design for a three-phase grid-connected photovoltaic (PV) system to control the current injected into the grid and the dc-link voltage for extracting maximum power from PV units. The controller is designed based on the partial feedback linearization approach, and the robustness of the proposed control scheme is ensured by considering structured uncertainties within the PV system model. An approach for modeling the uncertainties through the satisfaction of matching conditions is provided. The superiority of the proposed robust controller is demonstrated on a test system through simulation results under different system contingencies along with changes in atmospheric conditions. From the simulation results, it is evident that the robust controller provides excellent performance under various operating conditions. © 2014 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed electrochemical studies have been undertaken on molecular aggregation of the organic semiconductor 7,14-bis((triisopropylsilyl)-ethynyl) dibenzo[b,def]chrysene (TIPS-DBC), which is used as an electron donor material in organic solar cells. Intermolecular association of neutral TIPS-DBC molecules was established by using 1H NMR spectroscopy as well as by the pronounced dependence of the color of TIPS-DBC solutions on concentration. Diffusion limited current data provided by near steady-state voltammetry also reveal aggregation. Furthermore, variation of concentration produces large changes in shapes of transient DC and Fourier transformed AC (FTAC) voltammograms for oxidation of TIPS-DBC in dichloromethane. Subtle effects of molecular aggregation on the reduction of TIPS-DBC are also revealed by the highly sensitive FTAC voltammetric method. Simulations of FTAC voltammetric data provide estimates of the kinetic and thermodynamic parameters associated with oxidation and reduction of TIPS-DBC. Significantly, aggregation of TIPS-DBC facilitates both one-electron oxidation and reduction by shifting the reversible potentials to less and more positive values, respectively. EPR spectroscopy is used to establish the identity of one-electron oxidized and reduced forms of TIPS-DBC. Implications of molecular aggregation on the HOMO energy level in solution are considered with respect to efficiency of organic photovoltaic devices utilizing TIPS-DBC as an electron donor material. © 2014 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 Partial shading is one of the unavoidable complications in the field of solar power generation. Although the most common approach in increasing a photovoltaic (PV) array’s efficiency has always been to introduce a bypass diode to the said array, this poses another problem in the form of multi-peaks curves whenever the modules are partially shaded. To further complicate matters, most conventional Maximum Power Point Tracking methods develop errors under certain circumstances (for example, they detect the local Maximum Power Point (MPP) instead of the global MPP) and reduce the efficiency of PV systems even further. Presently, much research has been undertaken to improve upon them. This study aims to employ an evolutionary algorithm technique, also known as particle swarm optimization, in MPP detection. VC 2014 Author(s).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 Photovoltaic based microgrid have been increasingly investigated in recent years, ascribable to their fundamental advantages such as the infinite energy source, environmentally friendly aspect and low upkeep cost. However, in practice, they are still considered as an expensive and low output option of renewable energy resources. To extract the maximum possible power from the output of the PV system, a reliable maximum power point tracker (MPPT) is required. Numerous studies have been conducted to introduce the best MPPT techniques suitable for different types of PV systems. However, they are mostly able to track the MPP from the PV system when the output signals (Voltage and Current) of individual array are available. In this study, a meta-heuristic method, based on particle swarm optimization theory, is used to determine the actual MPP of PV system, including several PV arrays, by only single current sensor at the output terminal. The results of the proposed PSO based technique, for tracking the global MPP in a multidimensional search space, have been presented at the end of this paper.