86 resultados para PERFORMANCE LIQUID-CHROMATOGRAPHY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In-silico optimised two-dimensional high performance liquid chromatographic (2D-HPLC) separations of a model methamphetamine seizure sample are described, where an excellent match between simulated and real separations was observed. Targeted separation of model compounds was completed with significantly reduced method development time. This separation was completed in the heart-cutting mode of 2D-HPLC where C18 columns were used in both dimensions taking advantage of the selectivity difference of methanol and acetonitrile as the mobile phases. This method development protocol is most significant when optimising the separation of chemically similar chemical compounds as it eliminates potentially hours of trial and error injections to identify the optimised experimental conditions. After only four screening injections the gradient profile for both 2D-HPLC dimensions could be optimised via simulations, ensuring the baseline resolution of diastereomers (ephedrine and pseudoephedrine) in 9.7 min. Depending on which diastereomer is present the potential synthetic pathway can be categorized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The selection of two high performance liquid chromatography (HPLC) columns with vastly different retention mechanisms is vital for performing effective two-dimensional (2D-) HPLC. This paper reports on a systematic method to select a pair of HPLC columns that provide the most different separations for a given sample. This was completed with the aid of a HPLC simulator that predicted retention profiles on the basis of real experimental data, which is difficult when the contents of sample matrices are largely-or completely-unknown. Peaks from the same compounds must first be matched between chromatograms to compare the retention profiles and optimised 2D-HPLC column selection. In this work, two methods of matching peaks between chromatograms were explored and an optimal pair of chromatography columns was selected for 2D-HPLC. First, a series of 17 antioxidants were selected as an analogue for a coffee extract. The predicted orthogonality of the standards was 39%, according to the fractional surface coverage 'bins' method, which was close to the actual space utilisation of the standard mixture, 44%. Moreover, the orthogonality for the 2D-HPLC of coffee matched the predicted value of 38%. The second method employed a complex sample matrix of urine to optimise the column selections. Seven peaks were confidently matched between chromatograms by comparing relative peak areas of two detection strategies: UV absorbance and potassium permanganate chemiluminescence. It was found that the optimal combinations had an orthogonality of 35% while the actual value was closer to 30%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper explores the analytical figures of merit of two-dimensional high-performance liquid chromatography for the separation of antioxidant standards. The cumulative two-dimensional high-performance liquid chromatography peak area was calculated for 11 antioxidants by two different methods--the areas reported by the control software and by fitting the data with a Gaussian model; these methods were evaluated for precision and sensitivity. Both methods demonstrated excellent precision in regards to retention time in the second dimension (%RSD below 1.16%) and cumulative second dimension peak area (%RSD below 3.73% from the instrument software and 5.87% for the Gaussian method). Combining areas reported by the high-performance liquid chromatographic control software displayed superior limits of detection, in the order of 1 × 10(-6) M, almost an order of magnitude lower than the Gaussian method for some analytes. The introduction of the countergradient eliminated the strong solvent mismatch between dimensions, leading to a much improved peak shape and better detection limits for quantification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The selection of two orthogonal columns for two-dimensional high performance liquid chromatography (LC×LC) separation of natural product extracts can be a labour intensive and time consuming process and in many cases is an entirely trial-and-error approach. This paper introduces a blind optimisation method for column selection of a black box of constituent components. A data processing pipeline, created in the open source application OpenMS®, was developed to map the components within the mixture of equal mass across a library of HPLC columns; LC×LC separation space utilisation was compared by measuring the fractional surface coverage, fcoverage. It was found that for a test mixture from an opium poppy (Papaver somniferum) extract, the combination of diphenyl and C18 stationary phases provided a predicted fcoverage of 0.48 and was matched with an actual usage of 0.43. OpenMS®, in conjunction with algorithms designed in house, have allowed for a significantly quicker selection of two orthogonal columns, which have been optimised for a LC×LC separation of crude extractions of plant material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In-silico optimisation of a two-dimensional high performance liquid chromatography (2D-HPLC) separation protocol has been developed for the interogation of methamphetamine samples including model, real world seizure, and laboratory synthesised samples. The protocol used Drylab® software to rapidly identify the optimum separation conditions from a library of chromatography columns. The optimum separation space was provided by the Phenomonex Kinetex PFP column (first dimension) and an Agilent Poroshell 120 EC-C18 column (second dimension). To facilitate a rapid 2D-HPLC analysis the particle packed C18 column was replaced with a Phenomenex Onyx Monolithic C18 withought sacrificing separation performance. The Drylab® optimised and experimental separations matched very closely, highlighting the robust nature of HPLC simulations. The chemical information gained from an intermediate methamphetamine sample was significant and complimented that generated from a pure seizure sample. The influence of the two-dimensional separation on the analytical figures of merit was also investigated. The limits of detection for key analytes in the second dimension determined for methamphetamine (4.59 × 10-⁴ M), pseudoephedrine (4.03 × 10-4 M), caffeine (5.16 × 10-⁴ M), aspirin (9.32 × 10-4 M), paracetamol (5.93 × 10-4 M) and procaine (2.02 × 10-3 M).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various species in genus Hibiscus are traditionally known for their therapeutic attributes. The present study focused on the phytochemical analysis of a rather unexplored species Hibiscus caesius (H. caesius), using high-pressure liquid chromatography coupled with mass spectrometry (HPLC-MS). The analysis revealed five major compounds in the aqueous extract, viz. vanillic acid, protocatechoic acid, quercetin, quercetin glucoside and apigenin, being reported for the first time in H. caesius. Literature suggests that these compounds have important pharmacological traits such as anti-cancer, anti-inflammatory, anti-bacterial and hepatoprotective etc. however, this requires further pharmacological investigations at in vitro and in vivo scale. The above study concluded the medicinal potential of H. caesius.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Combined effects of hydrogen and air flow rates on the peak response of selected neutral lipid classes (triacylglycerol, diacylglycerol, monoacylglycerol, free fatty acids, and ethyl esters) were studied to optimize and calibrate the Iatroscan Mk-6s Chromarod system for the qualitative and quantitative analysis of lipid classes by thin-layer chromatography (TLC) with flame ionization detection in fish oil during the transesterification process. Air flow rate of 2 L/min, hydrogen flow rate of 150-160 mL/min, and scan rate of 30 s/rod were found to be the optimum conditions. All samples were also analyzed by high performance liquid chromatography (HPLC) with evaporative light scattering detection. Quantitative results obtained by TLC with the flame ionization detection method were comparable to those obtained from HPLC with evaporative light scattering detection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The retention characteristics of phenyl type stationary phases for reversed phase high performance liquid chromatography are still largely unknown. This paper explores the retention process of these types of stationary phases by examining the retention behaviour of linear PAHs and n-alkylbenzenes on a series of propyl phenyl stationary phases that have changes in their ligand density (1.23, 1.31, 1.97, 2.50 μmol m−2). The aromatic and methylene selectivities increased with increasing ligand density until a point where a plateau was observed, overall the propyl phenyl phases had a higher degree of aromatic selectivity than methylene selectivity indicating that these columns are suitable for separations involving aromatic compounds. Also, retention characteristics relating to the size of the solute molecule were observed to be influenced by the ligand density. It is likely that the changing retention characteristics are caused by the different topologies of the stationary phases at different ligand densities. At high ligand densities, the partition coefficient became constant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-performance liquid chromatography with chemiluminescence detection based on the reaction with acidic potassium permanganate and formaldehyde was explored for the determination of neurotransmitters and their metabolites. The neurotransmitters norepinephrine and dopamine were quantified in the left and right hemispheres of rat hippocampus, nucleus accumbens and prefrontal cortex, and the metabolites vanillylmandelic acid, 3,4-dihydrophenylacetic acid, 5-hydroxyindole-3-acetic acid and homovanillic acid were identified in human urine. Under optimised chemiluminescence reagent conditions, the limits of detection for these analytes ranged from 2.5 × 10−8 to 2.5 × 10−7 M. For the determination of neurotransmitter metabolites in urine, a two-dimensional high-performance liquid chromatography (2D-HPLC) separation operated in heart-cutting mode was developed to overcome the peak capacity limitations of the one-dimensional separation. This approach provided the greater separation power of 2D-HPLC with analysis times comparable to conventional one-dimensional separations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polystyrene behaviour in reversed phase high performance liquid chromatography was influenced mainly by the solvent system, but secondary affects were observed depending on the stationary phase. A variety of reversed phase columns were investigated using mobile phase combinations of dichlorom ethane-methanol, dichloromethane-acetonitrile, ethyl acetate-methanol and ethyl acetate-acetonitrile. Several different modes of behaviour were observed depending on the polymer solubility in the solvent system. In the dichloromethane-methanol solvent system, polymer-stationary phase interactions only occurred when the molecules had pore access. Retention of excluded polystyrene depended on the kinetics of precipitation and redissolution of the polymer. Peak splitting and band broadening occurred when the kinetics were slow and molecular weight separations were limited !o oligomers and polystyrenes lower than 5-10(4) dalton. Excellent molecular weight separations of polystyrenes were obtained using gradient elution reversed phase chromatography with a dichloromethane-acetonitrile mobile phase on C18 columns. The retention was based on polymer-stationary phase interactions regardless of the column pore size. Separations were obtained on large diameter pellicular adsorbents that were almost as good as those obtained on porous adsorbents, showing that pore access was not essential for the retention of high molecular weight polystyrenes. In the best example, the separation ranged from the monomer to 10(6) dalton in a single analysis. Very little adsorption of excluded polymers was observed on C8 or phenyl columns. Polystyrene molecular weight separations to 7-10(5) dalton were obtained in an ethyl acetate-acetonitrile solvent system on C18 columns. Adsorption was responsible for retention. When an ethyl acetate-methanol solvent system was used, no molecular weight separations were obtained because of complex peak splitting. Reversed phase chromatography was compared to size exclusion chromatography for the analysis of polydisperse polystyrenes. Similar results were obtained using both methods. However, the reversed phase method was less sensitive to concentration effects and gave better resolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis encompasses the development of analytical instrumentation, software and chemical methodologies for the rapid determination of pharmaceuticals in process extracts. Sensitive detection of morphine, codeine, oripavine and thebaine was achieved by measuring the quantity of light emitted as a result of their reactions with potassium permanganate and tris(2,2'-bipyridyl)ruthenium(III).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chromatographic capacity factors (log k‘) for 32 structurally diverse drugs were determined by high performance liquid chromatography (HPLC) on a stationary phase composed of phospholipids, the so-called immobilized artificial membrane (IAM). In addition, quantitative structure-retention relationships (QSRR) were developed in order to explain the dependence of retention on the chemical structure of the neutral, acidic, and basic drugs considered in this study. The obtained retention data were modeled by means of multiple regression analysis (MLR) and partial least squares (PLS) techniques. The structures of the compounds under study were characterized by means of calculated physicochemical properties and several nonempirical descriptors. For the carboxylic compounds included in the analysis, the obtained results suggest that the IAM-retention is governed by hydrophobicity factors followed by electronic effects due to polarizability in second place. Further, from the analysis of the results obtained of two developed quantitative structure-permeability studies for 20 miscellaneous carboxylic compounds, it may be concluded that the balance between polarizability and hydrophobic effects is not the same toward IAM phases and biological membranes. These results suggest that the IAM phases could not be a suitable model in assessing the acid-membrane interactions. However, it is not possible to generalize this observation, and further work in this area needs to be done to obtain a full understanding of the partitioning of carboxylic compounds in biological membranes. For the non-carboxylic compounds included in the analysis, this work shows that the hydrophobic factors are of prime importance for the IAM-retention of these compounds, while the specific polar interactions, such as electron pair donor−acceptor interactions and electrostatic interactions, are also involved, but they are not dominant.