125 resultados para Neustonic plastic


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal and mechanical properties of the ionic plastic crystal N-methyl-N-propylpyrrolidinium hexafluorophosphate have been investigated and the effect of adding a miscible polymer on the mechanical properties is reported. The physical properties of the pure plastic crystal are discussed in detail and for the first time the change in volume with temperature for an organic ionic plastic crystal is reported. An increase in volume in conjunction with increased conductivity supports the hypothesis that ion conduction within the plastic crystal proceeds via defects. For phase I and melting, the magnitude of the volume increase does not appear to be in accord with the subtle change in conductivity. This is suggested to be due to the presence of layer defects, which allow for correlated ionic motion, which does not increase the conductivity. Addition of polymer to the plastic crystal significantly increases the mechanical strength, decreases the conductivity, but has little effect on the phase behaviour, further supporting the hypothesis of vacancy-mediated conduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

N,N,N,N-Tetramethylammonium dicyanamide (Me4NDCA) has been examined via differential scanning calorimetry (DSC), thermogravimetric analysis, conductivity, single crystal X-ray diffraction and 1H nuclear magnetic resonance (NMR) analyses, and was found to be highly conductive in the solid state (σ =10−3 S cm−2 at 420 K) and to also exhibit unusual plastic crystal behaviour. To investigate the correlation between such behaviour and the occurrence of molecular rotations in the crystal, 1H NMR second moment measurements are compared with calculated values predicted from the crystal structure. While DSC analysis indicates a number of solid–solid transitions at ambient temperatures, subsequent 1H NMR analysis of the Me4N+ cation shows that a variety of rotational motions become active at low (<240 K) temperatures, and that such transitions in rotational states occur over a range of temperatures rather than in a sharp transition. Conductivity analysis reveals that between 320 K and 420 K the conductivity increases by more than six orders of magnitude in the solid state, in line with the transition of the Me4N+ cation to a diffusive state, and that other phase transitions observed in this temperature range have no marked effect on the conductivity. Conduction in this solid state is therefore envisaged to involve a vacancy-diffusion model, involving Me4N+ cation vacancies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High conductivity in solid-state electrolytes is a critical requirement for many advanced energy and other electrochemical applications. Plastic crystalline materials have shown promise in this regard, and the inclusion of nanosized inorganic particles in both amorphous and crystalline materials has indicated order of magnitude enhancements in ion transport induced by space charge or other defect enhancement. In this paper we present conductivity enhancements in the plastic crystal N,N‘-ethylmethylpyrrolidinium bis(trifluoromethanesulfonyl)amide ([C2mpyr][NTf2]) induced by nanosized SiO2 particles. The addition of the nanoparticles dramatically increases plasticity and ion mobility. Positron annihilation lifetime spectroscopy (PALS) measurements indicate an increase in mean defect size and defect concentration as a result of nanoparticle inclusion. The scaling of the conductivity with size suggests that a “trivial space charge” effect is operable, although a strain induced enhancement of defects (in particular extended defects) is also likely given the observed increase in plasticity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Doping lithium bis(trifluoromethanesulfonyl)amide (Li[NTf2]) into the N-ethyl,N′-methylpyrrolidinium bis(trifluoromethanesulfonyl)amide ([C2mpyr][NTf2]) plastic crystal material has previously indicated order of magnitude enhancements in ion transport and conductivity over pure [C2mpyr][NTf2]. Recently, conductivity enhancements in this ionic plastic crystal induced by SiO2 nanoparticles have also been reported. In this work the inclusion of SiO2 nanoparticles in Li ion doped [C2mpyr][NTf2] has been investigated over a wide temperature range by differential scanning calorimetry (DSC), impedance spectroscopy, positron annihilation lifetime spectroscopy (PALS), Raman spectroscopy, NMR spectroscopy and scanning electron microscopy (SEM). Solid state 1H NMR indicates that the addition of the nanoparticles increases the mobility of the [C2mpyr] cation and positron lifetime spectroscopy (PALS) measurements indicate an increase in mean defect size and defect concentration as a result of nanoparticle inclusion, especially with 10 wt% SiO2. Thus, the substantial drop in ion conductivity observed for this doped nanocomposite material was surprising. This decrease is most likely due to the decrease in mobility of the [NTf2] anion, possibly by its adsorption at the SiO2/grain boundary interface and concomitant decrease in mobility of the Li ion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Characterization of a new family of salts, based on a number of 1-alkyl-2-methyl pyrrolinium cations and the bis(trifluoromethane sulfonyl) amide anion (TFSA), is presented. From the thermal analysis, conductivity and X-ray diffraction (XRD) measurements, at least one of the compounds of the family, 1-ethyl-2-methyl pyrrolinium TFSA, was found to exhibit plastic crystal phases before melting and to exhibit high conductivity in the solid state (1×10−4 S cm−1 at 25 °C). This plastic crystal behaviour is discussed in comparison with other members of this pyrrolinium salt family.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Doping the molecular plastic crystal of succinonitrile with solid N-methyl-N-butylpyrrolidinium iodide salt and iodine has produced a highly conductive solid iodide/triiodide conductor. Furthermore, it was employed for a highly efficient, all-solid-state dye-sensitized solar cell.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Choline dihydrogen phosphate ([N1.1.1.2OH]DHP) and 1-butyl-3-methylimidazolium dihydrogen phosphate ([C4mim]DHP) were synthesized as a new class of proton-conducting ionic plastic crystals. Both [N1.1.1.2OH]DHP and [C4mim]DHP showed solid–solid phase transition(s) and showed a final entropy of fusion lower than 20 J K−1 mol−1 which is consistent with Timmerman’s criterion for molecular plastic crystals. The ionic conductivity of [N1.1.1.2OH]DHP was in the range of 10−6 S cm−1–10−3 S cm−1 in the plastic crystalline phase. On the other hand, the ionic conductivity of [C4mim]DHP showed about 10−5 S cm−1 in the plastic crystalline phase. [N1.1.1.2OH]DHP showed one order of magnitude higher ionic conductivity than [C4mim]DHP in the temperature range where the plastic phase is stable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Addition of silica nanoparticles functionalised with lithium propane sulfonate to the organic ionic plastic crystal N-ethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)amide ([C2mpyr][NTf2]) results in a significant increase in ionic conductivity. Analysis of these nanocomposites by impedance spectroscopy, NMR, positron annihilation lifetime spectroscopy (PALS) and Raman spectroscopy suggests that this is the result of higher matrix mobility due to an increase in defect size and concentration. The effect of these functionalised nanoparticles is compared to that previously observed for unfunctionalised nanoparticles in the lithium-doped and pure plastic crystal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigations into the synthesis and utilisation of organic ionic plastic crystals have made significant progress in recent years, driven by a continued need for high conductivity solid state electrolytes for a range of electrochemical devices. There are a number of different aspects to research in this area; fundamental studies, utilising a wide range of analytical techniques, of both pure and doped plastic crystals, and the development of plastic crystal-based materials as electrolytes in, for example, lithium ion batteries. Progress in these areas is highlighted and the development of new organic ionic plastic crystals, including a new class of proton conductors, is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The addition of nanoparticles to an organic ionic plastic crystal can result in orders of magnitude increases in ionic conductivity, which makes these materials of interest as solid state electrolytes. However, this effect is not universal and depends on both the nature of the organic ionic plastic crystal and on the type of nanoparticle used. The effect of addition of TiO2, Al2O3 and SiO2 nanoparticles to a range of ionic materials with varying plasticity and rotator phase behaviour has been studied by thermal analysis and conductivity and the effect on the different materials is compared.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analysis of N,N-dimethylpyrrolidinium tetrafluoroborate by 1H and 11B NMR, Raman spectroscopy and powder XRD shows that this organic ionic plastic crystal material exhibits unusual phase behaviour. 1H NMR analysis indicates that the mobility of the pyrrolidinium cation decreases when the material is heated into phase I, while the X-ray diffraction pattern changes from a simple, one peak structure in phase II to a more complex pattern in phase I. The possible origins of these unusual transitions are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper an effect of severe plastic deformation (SPD) on the microstructural evolution and properties of a plain C-Mn steel was investigated. The SPD was accomplished by the MaxStrain system which deforms material along two perpendicular axes while the deformation along the third axis is fully constrained. The applied amounts of true strains were 5 and 20 in total. Deformation was conducted at room and 500°C temperatures. Some samples deformed at room temperature were subsequently annealed at 500°C. A microstructural analysis by SEM/EBSD was used for recognition the low- and high-angle grain boundaries. It was found that the collective effect of severe plastic deformation (true strain of 20) and further annealing promotes the formation of high-angle grain boundaries and uniform fine grained microstructure. The refinement of ferrite microstructure results in a significant increase in strength and hardness.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research has developed an improved understanding of the structure-property relationships, fabrication technology and deformation mechanism of light bulk ultrafine grained materials and metallic multilayered structure.