99 resultados para Nanofiber


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, a finite element-based model was developed to investigate the mechanical behavior of step-wise graded carbon nanofibre/phenolic nanocomposites. Four step-wise graded nanocomposites (FGNs), a non-graded nanocomposite (NGN), and a pure phenolic with the same geometry and total carbon nanofiber content were designed, fabricated and analyzed. Flexural tests were conducted to validate the finite element model. Close agreement was obtained between experimental results and numerical predictions. The results showed that flexural modulus was highly influenced by the compositional gradients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal oxide chemiresistors (MOCs) with a low optimal operating temperature, high sensitivity and fast response/recovery are highly promising for various applications, but remain challenging to realize. Herein, we demonstrate that SnO2 nanofibers after being co-doped with Cu2+ and Au show considerably enhanced sensing performances at an unexpectedly decreased operating temperature. A synergistic effect occurs when the two dopants are introduced together. Co-doping may form a novel strategy to the development of ultrasensitive MOCs working at a low optimal temperature. This journal is © the Partner Organisations 2014.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanofibers possess high surface area and excellent porosity. Though nanofibers can be produced by a variety of techniques, electrospinning stands distinct because of its simplicity and flexibility in processing different polymer materials, and ability to control fiber diameter, morphology, orientation, and chemical component. Nonetheless, electrospun nanofibers are predominantly produced in the form of randomly oriented fiber webs, which restrict their wide use. Converting nanofibers into twisted continuous bundles, i.e., nanofiber yarns, can improve their strength and facilitate their subsequent processes, but remains challenging to make. Nanofiber yarns also create enormous opportunities to develop well-defined three-dimensional nanofibrous architectures. This review article gives an overview of the state-of-the-art techniques for electrospinning of nanofiber yarns and control of nanofiber alignment. A detailed account on techniques to produce twisted/non-twisted short bundles and continuous yarns are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the possibility of producing cellulose nanofiber from softwood pulp using a simple ball milling technique under ambient pressure and at room temperature. The effects of milling conditions including the ball-to-cellulose mass ratio, milling time, ball size and alkaline pretreatment were investigated. It was found that milling-ball size should be carefully selected for producing fibrous morphologies instead of particulates. Milling time and ball-to-cellulose mass ratio were also found important to control the fiber morphology. Alkali pre-treatment helped in weakening hydrogen bonds between cellulose fibrils and removing small particles, but with the risks of damaging the fibrous morphology. In a typical run, cellulose nanofiber with an average diameter of 100 nm was obtained using soft mechanical milling conditions using cerium-doped zirconia balls of 0.4–0.6 mm in diameter within 1.5 h without alkaline pretreatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Precursor fibers with diameters in nanometer scale and highly aligned polymer chains in fibers are highly promising for the preparation of high-performance carbon nanofibers, but are challenging to make. In this study, we demonstrate for the first time that a carbon nanofiber precursor can be prepared by the electrospinning of polyacrylonitrile into a nanofiber yarn and by the subsequent drawing treatment of the yarn in dry conditions. The yarn shows excellent drawing performance, which can be drawn evenly up to 6 times of its original length without breaking. The drawing treatment improves the yarn and fiber uniformity, polymer chain orientation within the fibers, as well as yarn tension and modules, but shows decreased yarn and fiber diameter and elongation at break. The drawing temperature and force show influences on the drawing behavior. The highest strength and modules (362 ± 37 MPa and 9.2 ± 1.4 GPa, respectively) are found on the yarn drawn by 5 times its length, which increased by 800% and 1800% when compared to the as-spun yarn. Through un-optimized stabilization and carbonization treatments, we further demonstrate that the carbonized nanofiber yarn shows comparable tensile properties as the commercial carbon fibers. Electrospun nanofiber yarns may form next generation precursors for making high performance carbon fibers. This journal is

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(vinylidene fluoride) (PVDF) nanofiber mats prepared by an electrospinning technique were used as an active layer for making mechanical-to-electric energy conversion devices. The effects of PVDF concentration and electrospinning parameters (e.g. applied voltage, spinning distance), as well as nanofiber mat thickness on the fiber diameter, PVDF β crystal phase content, and mechanical-to-electrical energy conversion properties of the electrospun PVDF nanofiber mats were examined. It was interesting to find that finer uniform PVDF fibers showed higher β crystal phase content and hence, the energy harvesting devices had higher electrical outputs, regardless of changing the electrospinning parameters and PVDF concentration. The voltage output always changed in the same trend to the change of current output whatever the change trend was caused by the operating parameters or polymer concentration. Both voltage and current output changes followed a similar trend to the change of the β crystal phase content in the nanofibers. The nanofiber mat thickness influenced the device electrical output, and the maximum output was found on the 70 μm thick nanofiber mat. These results suggest that uniform PVDF nanofibers with smaller diameters and high β crystal phase content facilitate mechanical-to-electric energy conversion. The understanding obtained from this study may benefit the development of novel piezoelectric nanofibrous materials and devices for various energy uses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanofiber yarns are important building blocks for making three-dimensional nanostructures, e.g. through a knitting or weaving process, with better mechanical properties than nanofiber nonwovens and well-controlled fibrous construction. However, it still remains challenging to produce quality nanofiber yarns in a sufficient rate. In this study, we have proven that online stretching during electrospinning of nanofiber yarns can considerably improve fiber alignment and molecular orientation within the yarn and increase yarn tensile strength, but reduce fiber/yarn diameters. By compensating twist during online stretching, the device can prepare nanofiber yarns with different stretch levels, but maintaining the same twist multiplier. This allows us to examine the effect of stretching on fiber and yarn morphology. It was interesting to find that on increasing the stretching ratio from 0% to 95%, the yarn diameter reduced from 135.1 ± 20.3 μm to 46.2 ± 10.2 μm, and the fiber diameter reduced from 998 ± 141 nm to 631 ± 98 nm, whereas the yarn tensile strength increased from 48.2 ± 5.6 MPa to 127.7 ± 5.4 MPa. Such an advanced yarn electrospinning technique can produce nanofiber yarn with an overall yarn production rate as high as 10 m min−1. This may be useful for production of nanofiber yarns for various applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aligned nanofiber mats were prepared from cellulose acetate using an electrospinning technique. The nanofiber mats were then immersed in an ethanol/acetone mixture. The solvent treatment led to denser, more compact fibrous structure and slight decrease in fiber alignment. It increased fiber diameter and polymer crystallinity within fibers. These effects resulted in increase in the tensile strength of fibrous mats. Solvent treatment may offer a simple, efficient approach to improve the mechanical strength of nanofibrous mats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymeric nanofiber non-woven materials produced by electrospinning have extremely high surface-to-mass (or volume) ratio and a porous structure with excellent pore-interconnectivity. These characteristics plus the functionalities and surface chemistry of the polymer itself impart the nanofibers with desirable properties for a range of advanced applications. This review summarizes the recent progress in electrospun nanofibers, with an emphasis on their applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyvinyl alcohol (PVA) nanofibers and single-walled carbon nanotube (SWNT)/PVA composite nanofibers have been produced by electrospinning. An apparent increase in the PVA crystallinity with a concomitant change in its main crystalline phase and a reduction in the crystalline domain size were observed in the SWNT/PVA composite nanofibers, indicating the occurrence of a SWNT-induced nucleation crystallization of the PVA phase. Both the pure PVA and SWNT/PVA composite nanofibers were subjected to the following post-electrospinning treatments: (i) soaking in methanol to increase the PVA crystallinity, and (ii) cross-linking with glutaric dialdehyde to control the PVA morphology. Effects of the PVA morphology on the tensile properties of the resultant electrospun nanofibers were examined. Dynamic mechanical thermal analyses of both pure PVA and SWNT/PVA composite electrospun nanofibers indicated that SWNT–polymer interaction facilitated the formation of crystalline domains, which can be further enhanced by soaking the nanofiber in methanol and/or cross-linking the polymer with glutaric dialdehyde.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrospinning is a very useful technique to produce polymeric nanofibers. It involves fast-drawing a polymer fluid into nanofibers under a strong electric filed, and depositing randomly on an electrode collector to form non-woven nanofiber mat in most cases [1]. The fibre stretching during electrospinning is a fast and incessant process which can be divided into three consecutive stages: jet initiation, whipping instability and fibre deposition. From the initial jet to dry fibres, the fibre stretching takes place in milliseconds, so it has been hardly so far to observe fiber morphology changes by any normal methods, such as high speed photography [2-5]. In this study, we used a facile and practical approach to realize the observation of nanofiber morphology changes during electrospinning. Through a special collection device with coagulation bath, newly electrospun nanofibers can be solidified at different electro spinning distances, and by associating the fiber morphology with the electrospinning distance (d), the morphological evolution of nanofibers can be established. We used polyacrylonitrile (PAN) and polystyrene (PS) as two model polymers to demonstrate this method in present research. From experimental results, we found the massive jet-thinning happens at the initial stage of the process. The formation of uniform PAN nanofibers (7%) and the beads structure changes on beads-on-string PAN nanofibers (5%) have also been successful observed. Using the same method, we also observed PS nanofiber (10%) morphology changes to understand the beads formation 011 nanofibers during electrospinning process, and how the beads was eliminated when ionic surfactant is added into the PS solution for electrospinning.