128 resultados para Mg doping


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mg alloys are one of promising eco-materials. The present paper describes the importance of grain refinement to develop high performance Mg alloys. The fine-grained Mg alloys exhibit not only a good combination of high strength and high ductility at room temperature, but also high formability (superplasticity) at elevated temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes tensile properties of a peak-aged Mg-4Y·3RE alloy at room temperature to 823 K with 10-5 - 10-1 s-1. The Mg alloy exhibited high strength (> 250 MPa) at room temperature to 473 K. However. the strength rapidly decreased at 573 K. It is suggested that a large decrease in strength at 573 K is attributed to grain boundary sliding. Also, elongation increased rapidly at 723 - 823 K. This is likely to arise from the relatively high strain rate sensitivity of about 0.3 due to the glide-controlled dislocation creep.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Major characteristics of Magnesium alloy are low density (= 1.8 g/cm3) and excellent recyclability; therefore Mg is considered as one of low environmental loading materials. The low-density materials, such as Mg, are suitable for the transportation system to reduce the emission of Co2, save energy resource and increase the safety for accidents like corrosions. In the place, cellular materials like aluminum foams are also low-density materials and can be controlled the stress-strain relation. Combination of Mg alloy and cellular materials, that is Mg cell, is one of the most excellent materials for transportation system, because of its ultra low density. safeties, and recycle ability. To make the Mg cellular materials. there are some problems to solve. One is how to make them uniformly to supply them as same perfonnance materials. One is how to make them inexpensively. Most of cellular materials are very expensive because of there are many processes or special fabrication system to make them. To solve these problems. we investigated the press cell materials. The press cell material consists sheets pressed as cell shape and wall. Therefore, it is very easy to make cellular materials and control validation of the performance of each foam materials. In this paper, we simulated compression tests of this new type of Mg alloy cellular materials under dynamic loading to investigate the relation between the compression speed and the compression behavior to show the shock absorbing capability of this new foam material. It is very important to understand their mechanical properties relatcd with cell shapes and wall to be applied widely.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanical properties of open-cellular magnesium alloys with three types of
geometric cell-structures, that is, a random round cell-structure (type A). a controlled diamond cell-structure for which the angle between the struts and the load direction is 45 degree (type B) and a controlled square cell-structure for which the angle between the struts and the loading direction is 0 degree (90 degree) (type C), are investigated by compressive tests. Results indicate that type C showed a higher collapse stress than the other two types. The collapse mechanism and the effects of the loading direction on collapse stress for the three types of magnesium alloys arc discussed from the viewpoint of bending, buckling and yielding of the struts. It is suggested that collapse for the open-cellular magnesium aHoys is associated with yielding of struts

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Researches the use of the electron back scattered diffraction analysis (EBSD) technique in investigating deformation modes in the magnesium alloy Mg-3Al-1Zn. Results showed the importance of non-basal slip, compression and double twinning during deformation of rolled Mg-3Al-1Zn. In as-cast material, twinning behaviour was more varied and complicated and could even occur upon unloading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deformation behaviour of magnesium alloy AZ31 was examined. The work found that dynamic recrystallisation operates during hot deformation. The influence that different process variables have on this mechanism were quantified. The optimisation of dynamic recrystallisation allows magnesium alloys to be formed into products more easily whilst developing enhanced final properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rolling was conducted at 373-673 K for AZ31 Mg alloy; mechanical properties of the rolled Mg alloy were investigated by tensile and blow forming tests. The grain sizes of all the rolled specimens were smaller than that of the specimen prior to rolling. At tensile temperatures under 373 K, the rolled specimens showed much higher 0.2% proof stresses than the non-rolled specimens due to their fine-grained microstructure. However, the strength of the rolled specimens decreased significantly at 473 K. Superplastic behavior was obtained at 573-723 K for the specimens rolled at 498 K. Blow forming tests demonstrated that specimens rolled at 498 K exhibited a high degree of formability at 723 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study has examined the thermodynamics of MgAl2O4 and MgO formations in Al–Mg alloy/quartz (>99% crystalline silica) through differential thermal analysis (DTA). The formation of MgAl2O4 and MgO is detected as exothermic peaks in the heat flow curve and the reaction is confirmed by the Si dissolution peaks observed during the reheating of samples and SEM analysis of the reacted sample. The presence of MgAl2O4 and MgO is confirmed in the XRD analysis of the reacted sample. The study has enabled the production of nano sized MgAl2O4 and MgO crystals at the interface of Al–Mg alloy and quartz. The reaction between them is found to be influenced by the oxidation of Mg, which is reduced by increasing heating rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study analyzes the morphological transformations of reaction products i.e., MgO, MgAl2O4 occurring during the reaction between SiO2 and Al-Mg alloy in Al-Mg-SiO2 composite processed by the liquid metallurgy technique. Different phases of platelet and hexagonal morphologies are detected and their composition analysis by EDS has confirmed them as being transition phases existing between MgO, MgAl2O4 and Al2O3. This study has also revealed the gradual transformation of (i) MgO needles to octahedral MgAl2O4 through Mg-Al-Si-O and Mg-Al-O transition phases having platelet morphologies and (ii) MgAl2O4 to Al2O3 through hexagonal transition phases on holding of Al-5Mg-SiO2 and Al-1Mg-SiO2 composites respectively at 1023K. Fully developed α-Al2O3 crystals are not observed under the present experimental conditions, wherein the Mg content is well above the equilibrium Mg content required for the formation of stable Al2O3 (<0.05 wt. %).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atom probe tomography (APT) has been carried out on three magnesium-based alloys: M1 (Mg-1 wt pct Mn), AZ31(Mg-3 pct Al-1 pct Zn), and ME10 (Mg-1 pct Mn- 0.4 pct misch metal). The aims of this experiment were to measure the composition of the matrix and to investigate solute clustering in the matrix of the three different alloys. For AZ31, the matrix composition was variable but close to the bulk composition. For ME10 and M1, the matrix was depleted in alloying additions, with the remainder residing in precipitates. Most alloying additions were found to exhibit clustering to some extent, with misch metal having the strongest partitioning behavior to clusters. Solute clusters did not appear to affect mechanical twinning. It has been proposed that the clustering behavior of misch metal contributes to its ability to modify the recrystallization texture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnesium alloys show promise for application in formed components where weight saving is an advantage. In most instances forming is carried out at elevated temperatures. However, there are considerable gains to be had if forming can be carried out under ambient conditions. The present article outlines some of the difficulties that lie in the way of achieving this objective. The underlying metallurgical characteristics of the issues are considered and means for overcoming them are discussed. It is concluded that a combination of microstructure and texture control remains a promising strategy.