122 resultados para Mechanical properties


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blends of a tetrafunctional epoxy resin, tetraglycidyl- 4,40'-diaminodiphenylmethane (TGDDM), and a hydroxylfunctionalized hyperbranched polymer (HBP), aliphatic hyperbranched polyester Boltorn H40, were prepared using 3,3'-diaminodiphenyl sulfone (DDS) as curing agent. The phase behavior and morphology of the DDS-cured epoxy/HBP blends with HBP content up to 30 phr were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM). The phase behavior and morphology of the DDS-cured epoxy/HBP blends were observed to be dependent on the blend composition. Blends with HBP content from 10 to 30 phr, show a particulate morphology where discrete HBP-rich particles are dispersed in the continuous cured epoxy-rich matrix. The cured blends with 15 and 20 phr exhibit a bimodal particle size distribution whereas the cured blend with 30 phr HBP demonstrates a monomodal particle size distribution. Mechanical measurements show that at a concentration range of 0–30 phr addition, the HBP is able to almost double the fracture toughness of the unmodified TGDDM epoxy resin. FTIR displays the formation of hydrogen bonding between the epoxy network and the HBP modifier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The strengthening mechanism responsible for the unique combination of ultimate tensile strength and elongation in a multiphase Fe-0.2C-1.5Mn-1.2Si-0.3Mo-0.6Al-0.02Nb (wt%) steel was studied. The microstructures with different volume fractions of polygonal ferrite, bainite and retained austenite were simulated by controlled thermomechanical processing. The interrupted tensile test was used to study the bainitic ferrite, retained austenite and polygonal ferrite behaviour as a function of plastic strain. X-ray analysis was used to characterise the volume fraction and carbon content of retained austenite. Transmission electron microscopy was utilised to analyse the effect of bainitic ferrite morphology on the strain induced transformation of retained austenite and retained austenite twinning as a function of strain in the bulk material. The study has shown that the austenite twinning mechanism is more preferable than the transformation induced plasticity (TRIP) mechanism during the early stages of deformation for a microstructure containing 15% polygonal ferrite, while the transformation induced plasticity effect is the main mechanism when there is 50% of polygonal ferrite in the microstructure. The bainitic ferrite morphology affects the deformation mode of retained austenite during straining. The polygonal ferrite behaviour during straining depends on dislocation substructure formed due to the deformation and the additional mobile dislocations caused by the TRIP effect. Operation of TRIP or twinning mechanisms depends not only on the chemical and mechanical stability of retained austenite, but also on the interaction of the phases during straining.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of pre-straining and bake hardening on the mechanical behaviour and microstructural changes were studied in two CMnSi TRansformation-Induced Plasticity (TRIP) steels with different microstructures after intercritical annealing. The TRIP steels before and after pre-straining and bake hardening were characterised by X-ray diffraction, optical microscopy, transmission electron microscopy, three dimensional atom probe and tensile tests. Both steels exhibited discontinuous yielding behaviour and a significant strength increase with some reduction in ductility after pre-straining and bake hardening treatment. The following main microstructural changes are responsible for the observed mechanical behaviours: a decrease in the volume fraction of retained austenite, an increase in the dislocation density and the formation of cell substructure in the polygonal ferrite, higher localized dislocation density in the polygonal ferrite regions adjacent to martensite or retained austenite, and the precipitation of fine iron carbides in bainite and martensite. The mechanism for the observed yield point phenomenon in both steels after treatment was analysed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes tensile properties of a peak-aged Mg-4Y·3RE alloy at room temperature to 823 K with 10-5 - 10-1 s-1. The Mg alloy exhibited high strength (> 250 MPa) at room temperature to 473 K. However. the strength rapidly decreased at 573 K. It is suggested that a large decrease in strength at 573 K is attributed to grain boundary sliding. Also, elongation increased rapidly at 723 - 823 K. This is likely to arise from the relatively high strain rate sensitivity of about 0.3 due to the glide-controlled dislocation creep.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanical properties of open-cellular magnesium alloys with three types of
geometric cell-structures, that is, a random round cell-structure (type A). a controlled diamond cell-structure for which the angle between the struts and the load direction is 45 degree (type B) and a controlled square cell-structure for which the angle between the struts and the loading direction is 0 degree (90 degree) (type C), are investigated by compressive tests. Results indicate that type C showed a higher collapse stress than the other two types. The collapse mechanism and the effects of the loading direction on collapse stress for the three types of magnesium alloys arc discussed from the viewpoint of bending, buckling and yielding of the struts. It is suggested that collapse for the open-cellular magnesium aHoys is associated with yielding of struts

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis examined the mechanical properties of natural fibre reinforced cementitious composite materials. The results have provided essential data for the design of these composite materials for different applications. The theoretical model developed also allows accurate prediction of composite behaviour under different loading conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the main aims of steel research for the automotive industry is to develop materials with the optimum combination of relevant properties, cost and productivity. The introduction of new TRansformation Induced Plasticity steels has been driven by the requirements to increase the ductility without compromising the strength. The main phenomenon responsible for the unique mechanical properties in these steels has been proposed to be the formation of multiphase structure, which can contribute to an increase in elongation during straining. The thesis studied the effect of the different alloying additions on the structure-property relationship in the TRIP steels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rolling was conducted at 373-673 K for AZ31 Mg alloy; mechanical properties of the rolled Mg alloy were investigated by tensile and blow forming tests. The grain sizes of all the rolled specimens were smaller than that of the specimen prior to rolling. At tensile temperatures under 373 K, the rolled specimens showed much higher 0.2% proof stresses than the non-rolled specimens due to their fine-grained microstructure. However, the strength of the rolled specimens decreased significantly at 473 K. Superplastic behavior was obtained at 573-723 K for the specimens rolled at 498 K. Blow forming tests demonstrated that specimens rolled at 498 K exhibited a high degree of formability at 723 K.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, porous nickel foam samples with pore sizes of 20 μm and 150 μm and porosities of 60 % and 70 % were fabricated by the space-holding sintering method via powder metallurgy. Electron scanning microscopy (SEM) and Image-Pro Plus were used to characterise the morphological features of the porous nickel foam samples. The anisotropic mechanical properties of porous nickel foams were investigated by compressive testing loading in different directions, i.e. the major pore axis and minor pore axis. Results indicated that the nominal stress of the nickel foam samples increases with the decreasing of the porosity. Moreover, the foam sample exhibited significantly higher nominal stress for loading in the direction of the major pore axis than loading in direction of the minor pore axis. It is also noticeable that the nominal stress of the nickel foams increases with the decreasing of the pore size. It seems that the deformation behaviour of the foams with a pore size in the micron-order differs from those with a macro-porous structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of solvent uptake on the relaxation behaviour, morphology and mechanical properties of poly(ether ether ketone) (PEEK), poly(etherimide) (PEI) and a 50/50 PEEK/PEI blend have been investigated. Amorphous films were immersed in acetone at 25°C, 35°C and 45°C until equilibrium uptake was achieved. The films were then examined by wide angle X-ray scattering (WAXS), differential scanning calorimetry (d.s.c.), dynamic mechanical relaxation spectroscopy and mechanical testing. WAXS and d.s.c. revealed that the degree of solvent induced crystallinity in PEEK is constant with immersion temperature, whereas the degree of induced crystallinity in the 50/50 blend is strongly temperature dependent. The dynamic mechanical studies confirmed that a significant decrease in glass transition temperature results from the plasticizing effect of the solvent and that solvent and thermally crystallized samples have different relaxation characteristics. Mechanical property tests showed that the yield stress and tensile strength of the blend are dominated by PEEK and the degree of crystallinity, while the modulus is more sensitive to the extent of plasticization.