47 resultados para Markov Models


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Currently, most human action recognition systems are trained with feature sets that have no missing data. Unfortunately, the use of human pose estimation models to provide more descriptive features also entails an increased sensitivity to occlusions, meaning that incomplete feature information will be unavoidable for realistic scenarios. To address this, our approach is to shift the responsibility for dealing with occluded pose data away from the pose estimator and onto the action classifier. This allows the use of a simple, real-time pose estimation (stick-figure) that does not estimate the positions of limbs it cannot find quickly. The system tracks people via background subtraction and extracts the (possibly incomplete) pose skeleton from their silhouette. Hidden Markov Models modified to handle missing data are then used to successfully classify several human actions using the incomplete pose features.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recognising behaviours of multiple people, especially high-level behaviours, is an important task in surveillance systems. When the reliable assignment of people to the set of observations is unavailable, this task becomes complicated. To solve this task, we present an approach, in which the hierarchical hidden Markov model (HHMM) is used for modeling the behaviour of each person and the joint probabilistic data association filters (JPDAF) is applied for data association. The main contributions of this paper lie in the integration of multiple HHMMs for recognising high-level behaviours of multiple people and the construction of the Rao-Blackwellised particle filters (RBPF) for approximate inference. Preliminary experimental results in a real environment show the robustness of our integrated method in behaviour recognition and its advantage over the use of Kalman filter in tracking people.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper examines a new problem in large scale stream data: abnormality detection which is localized to a data segmentation process. Unlike traditional abnormality detection methods which typically build one unified model across data stream, we propose that building multiple detection models focused on different coherent sections of the video stream would result in better detection performance. One key challenge is to segment the data into coherent sections as the number of segments is not known in advance and can vary greatly across cameras; and a principled way approach is required. To this end, we first employ the recently proposed infinite HMM and collapsed Gibbs inference to automatically infer data segmentation followed by constructing abnormality detection models which are localized to each segmentation. We demonstrate the superior performance of the proposed framework in a real-world surveillance camera data over 14 days.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Despite global declines in the abundance of marine predators, knowledge of foraging ecology, necessary to predict the ecological consequences of large changes in marine predator abundance, remains enigmatic for many species. Given that populations suffering severe declines are of conservation concern, we examined the foraging ecology of southern sea lions (SSL) (Otaria flavescens)-one of the least studied otariids (fur seal and sea lions)-which have declined by over 90 % at the Falkland Islands since the 1930s. Using a combination of biologging devices and stable isotope analysis of vibrissae, we redress major gaps in the knowledge of SSL ecology and quantify patterns of individual specialization. Specifically, we revealed two discrete foraging strategies, these being inshore (coastal) and offshore (outer Patagonian Shelf). The majority of adult female SSL (72 % or n = 21 of 29 SSL) foraged offshore. Adult female SSL that foraged offshore travelled further (92 ± 20 vs. 10 ± 4 km) and dived deeper (75 ± 23 vs. 21 ± 8 m) when compared to those that foraged inshore. Stable isotope analysis revealed long-term fidelity (years) to these discrete foraging habitats. In addition, we found further specialization within the offshore group, with adult female SSL separated into two clusters on the basis of benthic or mixed (benthic and pelagic) dive behavior (benthic dive proportion was 76 ± 9 vs. 51 ± 8 %, respectively). We suggest that foraging specialization in depleted populations such as SSL breeding at the Falkland Islands, are influenced by foraging site fidelity, and could be independent of intraspecific competition. Finally, the behavioral differences we describe are crucial to understanding population-level dynamics, impediments to population recovery, and threats to population persistence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Since 1998, tele-rehabilitation has been extensively studied for its potential capacity of saving time and cost for both therapists and patients. However, one gap hindering the deployment of tele-rehabilitation service is the approach to evaluate the outcome after tele-rehabilitation exercises without the presence of professional clinicians. In this paper, we propose an approach to model jerky and jerky-free movement trajectories with hidden Markov models (HMMs). The HMMs are then utilised to identify the jerky characteristics in a motion trajectory, thereby providing the number and amplitude of jerky movements in the specific length of the trajectory. Eventually, the ability of performing functional upper extremity tasks can be evaluated by classifying the motion trajectory into one of the pre-defined ability levels by looking at the number and amplitude of jerky movements. The simulation experiment confirmed that the proposed method is able to correctly classify motion trajectories into various ability levels to a high degree.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Likelihood computation in spatial statistics requires accurate and efficient calculation of the normalizing constant (i.e. partition function) of the Gibbs distribution of the model. Two available methods to calculate the normalizing constant by Markov chain Monte Carlo methods are compared by simulation experiments for an Ising model, a Gaussian Markov field model and a pairwise interaction point field model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we generalize Besag's pseudo-likelihood function for spatial statistical models on a region of a lattice. The correspondingly defined maximum generalized pseudo-likelihood estimates (MGPLEs) are natural extensions of Besag's maximum pseudo-likelihood estimate (MPLE). The MGPLEs connect the MPLE and the maximum likelihood estimate. We carry out experimental calculations of the MGPLEs for spatial processes on the lattice. These simulation results clearly show better performances of the MGPLEs than the MPLE, and the performances of differently defined MGPLEs are compared. These are also illustrated by the application to two real data sets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Determining the causal relation among attributes in a domain is a key task in data mining and knowledge discovery. The Minimum Message Length (MML) principle has demonstrated its ability in discovering linear causal models from training data. To explore the ways to improve efficiency, this paper proposes a novel Markov Blanket identification algorithm based on the Lasso estimator. For each variable, this algorithm first generates a Lasso tree, which represents a pruned candidate set of possible feature sets. The Minimum Message Length principle is then employed to evaluate all those candidate feature sets, and the feature set with minimum message length is chosen as the Markov Blanket. Our experiment results show the ability of this algorithm. In addition, this algorithm can be used to prune the search space of causal discovery, and further reduce the computational cost of those score-based causal discovery algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we consider daily financial data from various sources (stock market indices, foreign exchange rates and bonds) and analyze their multiscaling properties by estimating the parameters of a Markov-switching multifractal (MSM) model with Lognormal volatility components. In order to see how well estimated models capture the temporal dependency of the empirical data, we estimate and compare (generalized) Hurst exponents for both empirical data and simulated MSM models. In general, the Lognormal MSM models generate "apparent" long memory in good agreement with empirical scaling provided that one uses sufficiently many volatility components. In comparison with a Binomial MSM specification [11], results are almost identical. This suggests that a parsimonious discrete specification is flexible enough and the gain from adopting the continuous Lognormal distribution is very limited.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present a method for recognising an agent's behaviour in dynamic, noisy, uncertain domains, and across multiple levels of abstraction. We term this problem on-line plan recognition under uncertainty and view it generally as probabilistic inference on the stochastic process representing the execution of the agent's plan. Our contributions in this paper are twofold. In terms of probabilistic inference, we introduce the Abstract Hidden Markov Model (AHMM), a novel type of stochastic processes, provide its dynamic Bayesian network (DBN) structure and analyse the properties of this network. We then describe an application of the Rao-Blackwellised Particle Filter to the AHMM which allows us to construct an efficient, hybrid inference method for this model. In terms of plan recognition, we propose a novel plan recognition framework based on the AHMM as the plan execution model. The Rao-Blackwellised hybrid inference for AHMM can take advantage of the independence properties inherent in a model of plan execution, leading to an algorithm for online probabilistic plan recognition that scales well with the number of levels in the plan hierarchy. This illustrates that while stochastic models for plan execution can be complex, they exhibit special structures which, if exploited, can lead to efficient plan recognition algorithms. We demonstrate the usefulness of the AHMM framework via a behaviour recognition system in a complex spatial environment using distributed video surveillance data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addresses the problem of learning and recognizing human activities of daily living (ADL), which is an important research issue in building a pervasive and smart environment. In dealing with ADL, we argue that it is beneficial to exploit both the inherent hierarchical organization of the activities and their typical duration. To this end, we introduce the Switching Hidden Semi-Markov Model (S-HSMM), a two-layered extension of the hidden semi-Markov model (HSMM) for the modeling task. Activities are modeled in the S-HSMM in two ways: the bottom layer represents atomic activities and their duration using HSMMs; the top layer represents a sequence of high-level activities where each high-level activity is made of a sequence of atomic activities. We consider two methods for modeling duration: the classic explicit duration model using multinomial distribution, and the novel use of the discrete Coxian distribution. In addition, we propose an effective scheme to detect abnormality without the need for training on abnormal data. Experimental results show that the S-HSMM performs better than existing models including the flat HSMM and the hierarchical hidden Markov model in both classification and abnormality detection tasks, alleviating the need for presegmented training data. Furthermore, our discrete Coxian duration model yields better computation time and generalization error than the classic explicit duration model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recommender systems are important to help users select relevant and personalised information over massive amounts of data available. We propose an unified framework called Preference Network (PN) that jointly models various types of domain knowledge for the task of recommendation. The PN is a probabilistic model that systematically combines both content-based filtering and collaborative filtering into a single conditional Markov random field. Once estimated, it serves as a probabilistic database that supports various useful queries such as rating prediction and top-N recommendation. To handle the challenging problem of learning large networks of users and items, we employ a simple but effective pseudo-likelihood with regularisation. Experiments on the movie rating data demonstrate the merits of the PN.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Binary signatures have been widely used to detect malicious software on the current Internet. However, this approach is unable to achieve the accurate identification of polymorphic malware variants, which can be easily generated by the malware authors using code generation engines. Code generation engines randomly produce varying code sequences but perform the same desired malicious functions. Previous research used flow graph and signature tree to identify polymorphic malware families. The key difficulty of previous research is the generation of precisely defined state machine models from polymorphic variants. This paper proposes a novel approach, using Hierarchical Hidden Markov Model (HHMM), to provide accurate inductive inference of the malware family. This model can capture the features of self-similar and hierarchical structure of polymorphic malware family signature sequences. To demonstrate the effectiveness and efficiency of this approach, we evaluate it with real malware samples. Using more than 15,000 real malware, we find our approach can achieve high true positives, low false positives, and low computational cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work presented in this paper focuses on fitting of a neural mass model to EEG data. Neurophysiology inspired mathematical models were developed for simulating brain's electrical activity imaged through Electroencephalography (EEG) more than three decades ago. At the present well informative models which even describe the functional integration of cortical regions also exists. However, a very limited amount of work is reported in literature on the subject of model fitting to actual EEG data. Here, we present a Bayesian approach for parameter estimation of the EEG model via a marginalized Markov Chain Monte Carlo (MCMC) approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we compare two generative models including Gaussian Mixture Model (GMM) and Hidden Markov Model (HMM) with Support Vector Machine (SVM) classifier for the recognition of six human daily activity (i.e., standing, walking, running, jumping, falling, sitting-down) from a single waist-worn tri-axial accelerometer signals through 4-fold cross-validation and testing on a total of thirteen subjects, achieving an average recognition accuracy of 96.43% and 98.21% in the first experiment and 95.51% and 98.72% in the second, respectively. The results demonstrate that both HMM and GMM are not only able to learn but also capable of generalization while the former outperformed the latter in the recognition of daily activities from a single waist worn tri-axial accelerometer. In addition, these two generative models enable the assessment of human activities based on acceleration signals with varying lengths.