56 resultados para Mangrove ecosystems


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complexity is increasingly the hallmark in environmental management practices of sandy shorelines. This arises primarily from meeting growing public demands (e.g., real estate, recreation) whilst reconciling economic demands with expectations of coastal users who have modern conservation ethics. Ideally, shoreline management is underpinned by empirical data, but selecting ecologically-meaningful metrics to accurately measure the condition of systems, and the ecological effects of human activities, is a complex task. Here we construct a framework for metric selection, considering six categories of issues that authorities commonly address: erosion; habitat loss; recreation; fishing; pollution (litter and chemical contaminants); and wildlife conservation. Possible metrics were scored in terms of their ability to reflect environmental change, and against criteria that are widely used for judging the performance of ecological indicators (i.e., sensitivity, practicability, costs, and public appeal). From this analysis, four types of broadly applicable metrics that also performed very well against the indicator criteria emerged: 1.) traits of bird populations and assemblages (e.g., abundance, diversity, distributions, habitat use); 2.) breeding/reproductive performance sensu lato (especially relevant for birds and turtles nesting on beaches and in dunes, but equally applicable to invertebrates and plants); 3.) population parameters and distributions of vertebrates associated primarily with dunes and the supralittoral beach zone (traditionally focused on birds and turtles, but expandable to mammals); 4.) compound measurements of the abundance/cover/biomass of biota (plants, invertebrates, vertebrates) at both the population and assemblage level. Local constraints (i.e., the absence of birds in highly degraded urban settings or lack of dunes on bluff-backed beaches) and particular issues may require alternatives. Metrics - if selected and applied correctly - provide empirical evidence of environmental condition and change, but often do not reflect deeper environmental values per se. Yet, values remain poorly articulated for many beach systems; this calls for a comprehensive identification of environmental values and the development of targeted programs to conserve these values on sandy shorelines globally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Invasive rodent species have established on 80% of the world's islands causing significant damage to island environments. Insular ecosystems support proportionally more biodiversity than comparative mainland areas, highlighting them as critical for global biodiversity conservation. Few techniques currently exist to adequately detect, with high confidence, species that are trap-adverse such as the black rat, Rattus rattus, in high conservation priority areas where multiple non-target species persist. This study investigates the effectiveness of camera trapping for monitoring invasive rodents in high conservation areas, and the influence of habitat features and density of colonial-nesting seabirds on rodent relative activity levels to provide insights into their potential impacts. A total of 276 camera sites were established and left in situ for 8 days. Identified species were recorded in discrete 15 min intervals, referred to as 'events'. In total, 19 804 events were recorded. From these, 31 species were identified comprising 25 native species and six introduced. Two introduced rodent species were detected: the black rat (90% of sites), and house mouse Mus musculus (56% of sites). Rodent activity of both black rats and house mice were positively associated with the structural density of habitats. Density of seabird burrows was not strongly associated with relative activity levels of rodents, yet rodents were still present in these areas. Camera trapping enabled a large number of rodents to be detected with confidence in site-specific absences and high resolution to quantify relative activity levels. This method enables detection of multiple species simultaneously with low impact (for both target and non-target individuals); an ideal strategy for monitoring trap-adverse invasive rodents in high conservation areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human activities in coastal areas frequently cause loss of benthic macrophytes (e.g. seagrasses) and concomitant increases in microalgal production through eutrophication. Whether such changes translate into shifts in the composition of sediment detritus is largely unknown, yet such changes could impact the role these ecosystems play in sequestrating CO 2. We reconstructed the sedimentary records of cores taken from two sites within Botany Bay, Sydney - the site of European settlement of Australia - to look for human-induced changes in dominant sources of detritus in this estuary. Cores covered a period from the present day back to the middle Holocene (~6000 years) according to 210Pb profiles and radiocarbon ( 14C) dating. Depositional histories at both sites could not be characterized by a linear sedimentation rate; sedimentation rates in the last 30-50 years were considerably higher than during the rest of the Holocene. C : N ratios declined and began to exhibit a microalgal source signature from around the time of European settlement, which could be explained by increased nutrient flows into the Bay caused by anthropogenic activity. Analysis of stable isotopic ratios of 12C/ 13C showed that the relative contribution of seagrass and C 3 terrestrial plants (mangroves, saltmarsh) to detritus declined around the time of rapid industrial expansion (~1950s), coinciding with an increase in the contribution of microalgal sources. We conclude that the relative contribution of microalgae to detritus has increased within Botany Bay, and that this shift is the sign of increased industrialization and concomitant eutrophication. Given the lower carbon burial efficiencies of microalgae (~0.1%) relative to seagrasses and C 3 terrestrial plants (up to 10%), such changes represent a substantial weakening of the carbon sink potential of Botany Bay - this occurrence is likely to be common to human-impacted estuaries, and has consequences for the role these systems play in helping to mitigate climate change. © 2011 Blackwell Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Predicting ecological response to climate change is often limited by a lack of relevant local data from which directly applicable mechanistic models can be developed. This limits predictions to qualitative assessments or simplistic rules of thumb in data-poor regions, making management of the relevant systems difficult. We demonstrate a method for developing quantitative predictions of ecological response in data-poor ecosystems based on a space-for-time substitution, using distant, well-studied systems across an inherent climatic gradient to predict ecological response. Changes in biophysical data across the spatial gradient are used to generate quantitative hypotheses of temporal ecological responses that are then tested in a target region. Transferability of predictions among distant locations, the novel outcome of this method, is demonstrated via simple quantitative relationships that identify direct and indirect impacts of climate change on physical, chemical and ecological variables using commonly available data sources. Based on a limited subset of data, these relationships were demonstrably plausible in similar yet distant (>2000 km) ecosystems. Quantitative forecasts of ecological change based on climate-ecosystem relationships from distant regions provides a basis for research planning and informed management decisions, especially in the many ecosystems for which there are few data. This application of gradient studies across domains - to investigate ecological response to climate change - allows for the quantification of effects on potentially numerous, interacting and complex ecosystem components and how they may vary, especially over long time periods (e.g. decades). These quantitative and integrated long-term predictions will be of significant value to natural resource practitioners attempting to manage data-poor ecosystems to prevent or limit the loss of ecological value. The method is likely to be applicable to many ecosystem types, providing a robust scientific basis for estimating likely impacts of future climate change in ecosystems where no such method currently exists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ecosystem-level conservation is increasingly important at global, national and local levels. Many jurisdictions have developed and apply their own protocols for assessing the threat status of ecosystems, often independently, leading to inconsistencies between and within countries which are problematic for cross-jurisdictional environmental reporting. Australia is a good example of these historic legacies, with different risk assessment methods applied nationally and in most states. The newly developed criteria for the International Union for the Conservation of Nature (IUCN) Red List of Ecosystems (RLE) provide a framework to compare and contrast apparently divergent protocols. We critically reviewed the Australian protocols and compared them with the IUCN RLE, based on the following components of a risk assessment protocol: (i) categories of threat; (ii) assessment units; (iii) underlying concepts and definitions; (iv) assessment criteria; (v) uncertainty methods; and (vi) assessment outcomes. Despite some differences in specific objectives, criteria and their expression, the protocols were structurally similar, included broadly similar types of criteria, and produced assessment outcomes that were generally concordant. Alignment with the IUCN RLE would not require extensive changes to existing protocols, but would improve consistency, rigour and robustness in ecosystem risk assessment across jurisdictions. To achieve this, we recommend: (i) more quantitative assessments of functional change; (ii) separation of management and policy considerations from risk assessment; and (iii) cross-referencing of assessment units in different jurisdictions. We argue that the focus on processes and ecological function, rather than only patterns, is key to robust risk assessment. © 2014 The Authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract
Purpose – The purpose of this paper is to evaluate the critical success factors for sustainable e-learning in an e-learning ecosystem framework. Three critical components of the e-learning ecosystem including principles and methods, processes and systems, and substance and content are considered based on a comprehensive review of the relevant literature in e-learning.
Design/methodology/approach – Systematic interviews are conducted with experts in e-learning for identifying the critical success factors to sustainable e-learning within an e-learning ecosystem framework. This leads to the development of an e-learning success model that describes the underlying relationship between and among the identified critical success factors.
Findings – A comprehensive analysis of the interview results shows that there are several barriers to the effective adoption of the proposed e-learning success model for improving the effectiveness of e- learning. These barriers include a lack of understanding of the technologies behind various pedagogies, insufficiencies of the popular learning management systems, and the sustainability of the learning objects repositories.
Research limitations/implications – The paper highlights the criticality of synergizing the three components of e-learning ecosystems namely pedagogies, technologies and management of learning resources for achieving a sustainable e-learning success.
Practical implications – A better understanding of these barriers would help e-learning stakeholders develop appropriate strategies and policies for the implementation of the proposed e-learning success model towards creating a sustainable e-learning environment.
Originality/value – Specific contributions of this research to the entire e-learning community are discussed with recommendations for concerted policy measures to eliminate the identified barriers in the process of adopting the developed e-learning success model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We begin by briefly examining the achievements of the IUCN Red List of Threatened Species, and offering it as the model and motivator for the creation of the IUCN Red List of Ecosystems (RLE). The history of the RLE concept within IUCN is briefly summarized, from the first attempt to formally establish an RLE in 1996 to the present. Major activities since 2008, when the World Conservation Congress initiated a "consultation process for the development, implementation and monitoring of a global standard for the assessment of ecosystem status, applicable at local, regional and global levels," have included: Development of a research agenda for strengthening the scientific foundations of the RLE, publication of preliminary categories and criteria for examination by the scientific and conservation community, dissemination of the effort widely by presenting it at workshops and conferences around the world, and encouraging tests of the system for a diversity of ecosystem types and in a variety of institutional settings. Between 2009 and 2012, the Red List of Ecosystems Thematic Group of the IUCN Commission on Ecosystem Management organized 18 workshops and delivered 17 conferences in 20 countries on 5 continents, directly reaching hundreds of participants. Our vision for the future includes the integration of the RLE to the other three key IUCN knowledge products (IUCN Red List of Threatened Species, World Database on Protected Areas and Key Biodiversity Areas), in an on-line, user-driven, freely-accessible information management system for performing biodiversity assessments. In addition we wish to pilot the integration of the RLE into land/water use planning and macro-economic planning. Fundamental challenges for the future include: Substantial expansion in existing institutional and technical capacity (especially in biodiversity-rich countries in the developing world), progressive assessment of the status of all terrestrial, freshwater, marine and subterranean ecosystems, and development of a map of the ecosystems of the world. Our ultimate goal is that national, regional and global RLEs are used to inform conservation and land/water use decision-making by all sectors of society. © Author(s) 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The newly developed IUCN Red List of Ecosystems is part of a growing toolbox for assessing risks to biodiversity, which addresses ecosystems and their functioning. The Red List of Ecosystems standard allows systematic assessment of all freshwater, marine, terrestrial and subterranean ecosystem types in terms of their global risk of collapse. In addition, the Red List of Ecosystems categories and criteria provide a technical base for assessments of ecosystem status at the regional, national, or subnational level. While the Red List of Ecosystems criteria were designed to be widely applicable by scientists and practitioners, guidelines are needed to ensure they are implemented in a standardized manner to reduce epistemic uncertainties and allow robust comparisons among ecosystems and over time. We review the intended application of the Red List of Ecosystems assessment process, summarize 'best-practice' methods for ecosystem assessments and outline approaches to ensure operational rigour of assessments. The Red List of Ecosystems will inform priority setting for ecosystem types worldwide, and strengthen capacity to report on progress towards the Aichi Targets of the Convention on Biological Diversity. When integrated with other IUCN knowledge products, such as the World Database of Protected Areas/Protected Planet, Key Biodiversity Areas and the IUCN Red List of Threatened Species, the Red List of Ecosystems will contribute to providing the most complete global measure of the status of biodiversity yet achieved.