56 resultados para Low birth weight


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nanoparticies have been widely used to enhance the properties of natural rubber (NR). In the present paper a novel nanocomposite was developed by blending nano-ZnO slurry with prevulcanized NR latex, and the thermal degradation process of pure NR and NR/ZnO nanocomposites with different nano-ZnO loading was studied with a Perkin Elemer TGA-7 thermogravimetric analyzer. The thermal degradation parameters of NR/ZnO (2 parts ZnO per hundred dlY rubber) at different heating rates (Bs) were studied. The results show that the thermal degradation of pure NR and NR/ZnO nanocomposites in nitrogen is a one-step reaction. The degradation temperatures of NR/ZnO nanocomposite increase with an increasing B. The peak height (Rp) on the differential thermogravimetric curve increases with the increase of B. The degradation rates are not affected significantly by B, and the average values of thermal degradation rate Cp and Cf are 44.42 % and 81.04 %, respectively. The thermal degradation kinetic parameters are calculated with Ozawa-Flynn-Wall method. The activation energy (E) and the frequency factor (A) vary with ecomposition degree, and can be divided into three phases corresponding to the volatilization of low-molecular-weight materials, the thermal degradation ofNR main chains and the decomposition of residual carbon.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We employed a highly specific photoaffinity labeling procedure, using 14C-labeled S-adenosyl-L-methionine (AdoMet) to define the chemical structure of the AdoMet binding centers on cyclosporin synthetase (CySyn). Tryptic digestion of CySyn photolabeled with either [methyl-14C]AdoMet or [carboxyl-14C]AdoMet yielded the sequence H2N-Asn-Asp-Gly-Leu-Glu-Ser-Tyr-Val-Gly-Ile-Glu-Pro-Ser-Arg-COOH (residues 10644-10657), situated within the N-methyltransferase domain of module 8 of CySyn. Radiosequencing detected Glu10654 and Pro10655 as the major sites of derivatization. [carboxyl-14C]AdoMet in addition labeled Tyr10650. Chymotryptic digestion generated the radiolabeled peptide H2N-Ile-Gly-Leu-Glu-Pro-Ser-Gln-Ser-Ala-Val-Gln-Phe-COOH, corresponding to amino acids 2125-2136 of the N-methyltransferase domain of module 2. The radiolabeled amino acids were identified as Glu2128 and Pro2129, which are equivalent in position and function to the modified residues identified with tryptic digestions in module 8. Homology modeling of the N-methyltransferase domains indicates that these regions conserve the consensus topology of the AdoMet binding fold and consensus cofactor interactions seen in structurally characterized AdoMet-dependent methyltransferases. The modified sequence regions correspond to the motif II consensus sequence element, which is involved in directly complexing the adenine and ribose components of AdoMet. We conclude that the AdoMet binding to nonribosomal peptide synthetase N-methyltransferase domains obeys the consensus cofactor interactions seen among most structurally characterized low molecular weight AdoMet-dependent methyltransferases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many microbial peptide secondary metabolites possess important medicinal properties, of which the immunosuppressant cyclosporin A is an example. The enormous structural and functional diversity of these low-molecular weight peptides is attributable to their mode of biosynthesis. Peptide secondary metabolites are assembled non-ribosomally by multi-functional enzymes, termed non-ribosomal peptide synthetases. These systems consist of a multi-modular arrangement of the functional domains responsible for the catalysis of the partial reactions of peptide assembly. The extensive homology shared among NRPS systems allows for the generalisation of the knowledge garnered from studies of systems of diverse origins. In this review we shall focus the contemporary knowledge of non-ribosomal peptide biosynthesis on the structure and function of the cyclosporin biosynthetic system, with some emphasis on the re-direction of the biosynthetic potential of this system by combinatorial approaches.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aqueous extract of the edible green microalgae Chlorella pyrenoidosa is of interest because of its immunostimulatory activity. Some components in the extract have been identified previously, namely a unique type of arabinogalactan and a galactofuran. Further fractionation of this extract was accomplished by treating the aqueous solution of the fraction precipitated by addition of 1.5vol of 95% ethanol with cetyltrimethylammonium bromide. The residue obtained by concentration of the supernatant was fractionated further by anion-exchange chromatography and size-exclusion chromatography on Sephadex G-100. Two fractions from the latter column were retained, of which one was a starch-like alpha-(1-->4)-linked d-glucan with some alpha-(1-->6) branches, and the other contained a starch plus a mixture of beta-(1-->2)-d-glucans. ESI mass spectrometry was used to show that the mixture contained both cyclic and linear beta-(1-->2)-d-glucans in a cyclic:linear ratio of 64:36, based on intensities of mass spectral peaks. For the cyclic beta-(1-->2)-d-glucans, ring sizes ranged from 18 to 35 monosaccharides with the ring containing 21 glucose units (54% of the cyclic glucans) being greater than three times more abundant than the next most abundant component, the ring containing 22 glucose units (15%). No rings containing 20 glucose units were present. This is the first observation of cyclic beta-(1-->2)-d-glucans in algae, as far as we are aware. For the linear beta-(1-->2)-d-glucans, the component containing 20 glucoses was most abundant (35% of the linear glucans), while the component containing 21 glucose units was the next most abundant (17%). These relatively low-molecular-weight glucans had low immunostimulatory activity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A well designed runner and feeding system should produce castings with minimal defects and low pour weight. This thesis investigates how the filling regime and solidification of the mould influences defects in the castings produced from that mould. Design guidelines to reduce such defects are proposed and tested. An existing shrinkage fault in a Grey Iron disc brake casting is simulated using a commercial finite-difference computer program. Three criteria are used to predict the defect and the effect of changes to the feeder geometry. Critical Fraction Solidification analysis is used to determine whether the feeder remains in liquid contact with the casting during solidification and this approach is shown to correctly predict the presence or absence of porosity* The feeder block is extended below the ingate of the casting to improve liquid contact between the casting and feeder without significantly increasing the feeder mass. Plant trials confirm the change to the feeder eliminates the porosity defect. The runner system and mould venting for a thin walled Ductile Iron casting are investigated. Trials show that by setting the total mould vent area to be greater than the net ingate area of the castings, the cold-shut frequency is halved. A method for runner system design based on peak linear flow velocity in the runner during mould filling is proposed. A new pressurised runner system produces castings with significantly fewer defects and reduced pour weight when runner areas are designed to maintain peak velocity below 1 m/s. Peak velocity and magnesium levels are demonstrated to be critical factors in the elimination of cold-shut defects. A pressurised runner system is also shown to isolate inclusion defects from castings more effectively than an unpressurised system. From this work, a technique is proposed which allows the yield of an existing runner and feeder system for iron castings to be improved with confidence in the results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Solid polymer electrolytes based on amorphous polyether-urethane networks combined with lithium or sodium salts and a low molecular weight cosolvent (plasticizer) have been investigated in our laboratories for several years. Conductivity enhancements of up to two orders of magnitude can be obtained whilst still retaining solid elastomeric properties. In order to understand the effects of the plasticizers and their mechanism of conductivity enhancement, multinuclear NMR has been employed to investigate ionic structure in polymer electrolyte systems containing NaCF3SO3, LiCF3SO3 and LiClO3 salts.

With increasing dimethyl formamide (DMF) and propylene carbonate (PC) concentration the increasing cation chemical shift with fixed salt concentration indicates a decreasing anion-cation association consistent with an increased number of charge carriers. 13C chemical shift data for the same systems suggests that whilst DMF also decreases cation-polymer interactions, PC does the opposite, presumably by shielding cation-anion interactions. Temperature dependent 7Li spin-lattice relaxation times indicate the expected increase in ionic mobility upon plasticization with a shift of the T1 minimum to lower temperatures. The magnitude of T1 at the minimum increases upon addition of DMF whereas there is a slight decrease when PC is added. This also supports the suggestion that the DMF preferentially solvates the cation whereas the action of PC is limited to coulomb screening, hence freeing the anion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

NMR provides a tool whereby the dynamic properties of specific nuclei can be investigated. In the present study, a poly(ethylene oxide-co-propylene oxide) network has been used as the polymer host to prepare solid polymer electrolytes (SPE) containing either LiClO4 or LiCF3SO3. In addition, a low molecular weight plasticizer [propylene carbonate (PC), dimethyl formamide (DMF) or tetraglyme] has been added to several of the samples to enhance the mobility of the polymer and, thus, of the ionic species. The effects of plasticizer and salt concentration on the ionic structure and mobility in these SPEs, as measured by NMR relaxation times, and correlation to the conductivity behaviour in these systems are discussed. Temperature dependent triflate diffusion coefficients, as measured by Pulsed Field Gradient 19F-NMR, in plasticized SPEs are also reported.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

13C NMR spin–lattice relaxation times T1 are used to investigate the effect of low molecular weight diluents, including N,N-dimethylformamide, N-methylformamide, propylene carbonate, γ-butyrolactone, triglyme and tetraglyme, on the local polymer segmental motion in polyether–urethane networks. In all cases, an increase in the local mobility is deduced from the increasing T1 measurements consistent with a decreasing glass transition temperature. The extent of plasticization, however, is dependent on the nature of the small molecules. Those molecules which can either form strong polymer-diluent interactions (for example through dipolar interactions) or are themselves rigid, give the least enhancement of polymer mobility and the greatest deviation from the Fox equation for Tg. In the presence of alkali metal salts, N,N-dimethylformamide and propylene carbonate are shown to have opposite effects on the local polymer motion, as seen from the T1 measurements. In both cases, addition of the plasticizers increases the 13C T1 relaxation times for the plasticizer. However, propylene carbonate decreases the polymer 13C T1 whilst N,N-dimethylformamide results in the expected increase in polymer 13C T1.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A recent report on the correlation between enhanced polymer mobility and ionic conductivity at room temperature in plasticized polyether-urethane solid polymer electrolytes (Forsyth et al.[1]), has prompted the present investigation. Positron annihilation lifetime spectroscopy (PALS) has been used to study the effect of plasticizer addition on the room temperature free volume characteristics of the crosslinked polyether-urethane. The addition of low molecular weight plasticizers to the polyether-urethane results in a constant or decreasing mean free volume cavity radius, as measured by the orthoPositronium lifetime τ3, and a decreasing relative concentration of free volume cavities as measured by the ortho-Positronium intensity, I3. It is postulated that the plasticizers interrupt polymer-polymer interactions by occupying the inter- and intra-chain free volume. The plasticizer structure influences the polymerplasticizer interactions which affect inter- and intra-chain separation and hence the free volume of the system. The decrease in polymer-polymer interaction and the increase in polymer-plasticizer interaction in turn influence the glass transition temperature behaviour.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The addition of low molecular weight solvents such as dimethyl formamide (DMF) and propylene carbonate (PC) to urethane crosslinked polyethers results in enhancement of polymer segmental motion, as determined in this work from polymer 13C spin lattice relaxation measurements (T1) and glass transition temperatures. The formation of salt-polyether complexes results in a decrease in T1, even in the presence of the plasticizer, indicating that the polymer ether molecules are still involved in the alkali metal coordination. In a polymer electrolyte containing 1 mol kg−1 LiClO4 the addition of DMF and PC have significantly different affects on the polymer mobility, although they both enhance the conductivity. The conductivity enhancement therefore is not solely the result of an increased solvent mobility.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The addition of various kinds of plasticizers can enhance the conductivity of polymer electrolyte systems, in some cases by many orders of magnitude. The plasticizer may be a low molecular weight solvent, or be a low molecular weight polymer. As the plasticizer concentration increases there is an inevitable deterioration in material properties. In this work we have investigated the effect of plasticizer on the conductivity, thermal properties and matrial properties of a number of systems including urethane cross-linked polyethers and polyacrylates. In some of the systems, in particular the polyether electrolytes, the plasticizer acts to enhance conduction by acting as a cosolvent for the salt as well as increasing chain flexibility. Its efficacy is dependent on its structure and characteristics as a solvent. Although Tg is lowered in a close to linear fashion with increasing plasticizer content and thereby conductivity increased rapidly, the elastic modulus changes more slowly. This reflects the coupling of conduction to the local mobility of the molecular units of the combined solvent system and the relative decoupling of the mobility and glass transition from the material properties. In these systems the latter are a function mainly of the longer range structure of the polymer network. The changes in conductivity and materials properties are interpreted in terms of a configurational entropy model of the solution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Maintaining low body weight for the sake of performance and aesthetic purposes is a common feature among young girls and women who exercise on a regular basis, including elite, college and high-school athletes, members of fitness centres, and recreational exercisers. High energy expenditure without adequate compensation in energy intake leads to an energy deficiency, which may ultimately affect reproductive function and bone health. The combination of low energy availability, menstrual disturbances and low bone mineral density is referred to as the ‘female athlete triad’. Not all athletes seek medical assistance in response to the absence of menstruation for 3 or more months as some believe that long-term amenorrhoea is not harmful. Indeed, many women may not seek medical attention until they sustain a stress fracture.
This review investigates current issues, controversies and strategies in the clinical management of bone health concerns related to the female athlete triad. Current recommendations focus on either increasing energy intake or decreasing energy expenditure, as this approach remains the most efficient strategy to prevent further bone health complications. However, convincing the athlete to increase energy availability can be extremely challenging.
Oral contraceptive therapy seems to be a common strategy chosen by many physicians to address bone health issues in young women with amenorrhoea, although there is little evidence that this strategy improves bone mineral density in this population. Assessment of bone health itself is difficult due to the limitations of dual-energy X-ray absorptiometry (DXA) to estimate bone strength. Understanding how bone strength is affected by low energy availability, weight gain and resumption of menses requires further investigations using 3-dimensional bone imaging techniques in order to improve the clinical management of the female athlete triad.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rhoptry associated protein 1 (RAP1) and 2 (RAP2), together with a poorly described third protein RAP3, form the low molecular weight complex within the rhoptries of Plasmodium falciparum. These proteins are thought to play a role in erythrocyte invasion by the extracellular merozoite and are important vaccine candidates. We used gene-targeting technology in P.falciparum blood-stage parasites to disrupt the RAP1 gene, producing parasites that express severely truncated forms of RAP1. Immunoprecipitation experiments suggest that truncated RAP1 species did not complex with RAP2 and RAP3. Consistent with this were the distinct subcellular localizations of RAP1 and 2 in disrupted RAP1 parasites, where RAP2 does not traffic to the rhoptries but is instead located in a compartment that appears related to the lumen of the endoplasmic reticulum. These results suggest that RAP1 is required to localize RAP2 to the rhoptries, supporting the hypothesis that rhoptry biogenesis is dependent in part on the secretory pathway in the parasite. The observation that apparently host-protective merozoite antigens are not essential for efficient erythrocyte invasion has important implications for vaccine design.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: To investigate the effects of live weight, sex and other factors on deciduous (first incisor) loss and permanent first incisor development in Angora goats. Design: Goats were part of a pen study on the effects of energy intake in Angora does during pregnancy and lactation on kid growth and development. The design was three levels of nutrition in mid-pregnancy × two levels of postnatal nutrition in 17 randomised blocks. Methods: Conception times were calculated by using artificial insemination, with ultrasound examination 43 days after insemination. Does were fed different amounts of a formulated diet in their pens. After weaning, goats were grazed in sex groups. Deciduous first incisor loss and permanent first incisor development were recorded at 11 time points from 14 to 20 months of age. Results: For each sex, the time for visible eruption and full development of permanent first incisor declined linearly with increased live weight by 5.9 and 5.4 days/kg live weight, respectively. The time to reach similar development stages for first permanent incisors eruption was 3 months longer for the lightest animals compared with the heaviest animals. Date of birth, birth weight, doe age, growth rates, mid-pregnancy and postnatal nutrition, parity, day of weaning and weaning weight had no detectable effect. Conclusions: The results explain much of the substantial range in reported first permanent incisor eruption dates for small ruminants and have application in ageing of goats, marketing of kids for meat, in the selection of animals for breeding flocks and in educational material.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Foetal growth restriction impairs skeletal muscle development and adult muscle mitochondrial biogenesis. We hypothesized that key genes involved in muscle development and mitochondrial biogenesis would be altered following uteroplacental insufficiency in rat pups, and improving postnatal nutrition by cross-fostering would ameliorate these deficits. Bilateral uterine vessel ligation (Restricted) or sham (Control) surgery was performed on day 18 of gestation. Males and females were investigated at day 20 of gestation (E20), 1 (PN1), 7 (PN7) and 35 (PN35) days postnatally. A separate cohort of Control and Restricted pups were cross-fostered onto a different Control or Restricted mother and examined at PN7. In both sexes, peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1α (PGC-1α), cytochrome c oxidase subunits 3 and 4 (COX III and IV) and myogenic regulatory factor 4 expression increased from late gestation to postnatal life, whereas mitochondrial transcription factor A, myogenic differentiation 1 (MyoD), myogenin and insulin-like growth factor I (IGF-I) decreased. Foetal growth restriction increased MyoD mRNA in females at PN7, whereas in males IGF-I mRNA was higher at E20 and PN1. Cross-fostering Restricted pups onto a Control mother significantly increased COX III mRNA in males and COX IV mRNA in both sexes above controls with little effect on other genes. Developmental age appears to be a major factor regulating skeletal muscle mitochondrial and developmental genes, with growth restriction and cross-fostering having only subtle effects. It therefore appears that reductions in adult mitochondrial biogenesis markers likely develop after weaning.