109 resultados para LONG-DISTANCE MIGRATION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied the energy and protein balance of a Thrush Nightingale Luscinia luscinia, a small long-distance migrant, during repeated 12-hr long flights in a wind tunnel and during subsequent two-day fueling periods. From the energy budgets we estimated the power requirements for migratory flight in this 26 g bird at 1.91 Watts. This is low compared to flight cost estimates in birds of similar mass and with similar wing shape. This suggests that power requirements for migratory flight are lower than the power requirements for nonmigratory flight. From excreta production during flight, and nitrogen and energy balance during subsequent fueling, the dry protein proportion of stores was estimated to be around 10%. A net catabolism of protein during migratory flight along with that of fat may reflect a physiologically inevitable process, a means of providing extra water to counteract dehydration, a production of uric acid for anti-oxidative purposes, and adaptive changes in the size of flight muscles and digestive organs in the exercising animal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Some animals migrate huge distances in search of resources with locomotory mode (flying/swimming/walking) thought to drive the upper ceilings on migration distance. Yet in cross-taxa comparisons, upper ceilings on migration distance have been ignored for one important group, sea turtles. 2. Using migration distances recorded for 407 adult and 4715 juvenile sea turtles across five species, we show that for adult cheloniid turtles, the upper ceiling on species migration distances between breeding and foraging habitats (1050–2850 km across species) is similar to that predicted for equivalent-sized marine mammals and fish. 3. In contrast, by feeding in the open ocean, adult leatherback turtles (Dermochelys coriacea) and juveniles of all turtle species can travel around 12 000 km from their natal regions, travelling across the widest ocean basins. For juvenile turtles, this puts their maximum migration distances well beyond those expected for equivalent-sized marine mammals and fish, but not those found in some similar sized birds. 4. Post-hatchling turtles perform these long-distance migrations to juvenile foraging sites only once in their lifetime, while adult turtles return to their breeding sites every few (generally ?2) years. Our results highlight the important roles migration periodicity and foraging mode can play in driving the longest migrations, and the implications for Marine Protected Area planning are considered in terms of sea turtle conservation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long-distance bird migration consists of several flight episodes interrupted by a series of resting and refuelling periods on stopover sites. We assessed the role of food availability as the determinant of staging decisions focusing on the following three aspects of food availability: intake rates, stochasticity in intake rates and onset of spring. Using stochastic dynamic modelling, we investigated their impact on staging times and expected fitness. Subsequently, we compared relations in the use of the stopover sites as predicted by the model with empirical data of the Svalbard-breeding population of Pink-footed Goose Anser brachyrhynchus collected in the period 1990–2002. Our results indicate that, for the case of Pink-footed Geese, spring phenology determines a major part of the migration schedule. In contrast to our expectations, intake rates were generally only of minor importance; however, when approaching the breeding grounds their significance increased. Expected fitness at arrival on the breeding grounds showed that the geese can compensate for changes in a broad range of food availability and also cope with varying degrees of stochasticity. However, declining intake rates at the last stopover site or very late onsets of spring clearly decreased fitness. As predicted by the model, the use of stopover sites was interdependent – from empirical data we derived negative relationships between the staging durations of subsequent sites. These results lend credit to an integrated spatially explicit approach focussing on multiple stopover site characteristics when attempting to improve our understanding of bird migration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Afro–Siberian Red Knot subspecies, Calidris canutus canutus, winters mainly on Banc d’Arguin, Mauritania, West Africa. An International Wader Study Group project carried out in 1979 suggested that during northward migration Red Knots cover their migration between the wintering grounds and the Siberian breeding grounds in two long-distance non-stop flights, stopping only in the Wadden Sea in Schleswig-Holstein, Germany. Each year Red Knots also visit staging sites along the French Atlantic coast in addition to the German Wadden Sea. Ever since 1979, the French staging sites have been counted on a regular basis and here we present the count data from these 30 years. In some years more than 20% of the population used the French Atlantic coast as a staging site, but numbers are highly variable from one year to the next. We suggest that high numbers in France might occur when birds have to stop short of the Wadden Sea because of head-winds and/or a lack of tail-winds en route from West Africa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Observations of departing Siberian-breeding Red Knots Calidris canutus canutus from their central staging site during northward migration, the Schleswig-Holstein Wadden Sea, Germany, in early June 2008, challenge the established notion that departing long-distance migrating waders only leave around sunset. During four days we scanned several thousand Red Knots for colour-ringed individuals and found a total of 20 different individuals that were previously ringed at either their main wintering site, the Banc d'Arguin in Mauritania, or at stopover sites on the Atlantic coast of France. Body masses of captured Red Knots in Schleswig-Holstein were higher than 200 g and hematocrite values showed an average of 58%, clearly indicating that they were ready for take-off. On all except one evening, we noted impressive departure movements during the incoming tide. On that exceptional evening a cold front thunderstorm passed over the area. Late the next morning, thousands of Red Knots departed during the incoming tide. We assume that the birds avoided taking off in adverse weather conditions and elaborate why Red Knots presumably traded off advantages from departing during twilight. We suggest that during spring migration, schedules are so tight that further delays decrease fitness, either because it would cause another full day of exposure to high predation risk by falcons, or because of conditions upon arrival on the tundra.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long-distance migratory birds are often considered extreme athletes, possessing a range of traits that approach the physiological limits of vertebrate design. In addition, their movements must be carefully timed to ensure that they obtain resources of sufficient quantity and quality to satisfy their high-energy needs. Migratory birds may therefore be particularly vulnerable to global change processes that are projected to alter the quality and quantity of resource availability. Because long-distance flight requires high and sustained aerobic capacity, even minor decreases in vitality can have large negative consequences for migrants. In the light of this, we assess how current global change processes may affect the ability of birds to meet the physiological demands of migration, and suggest areas where avian physiologists may help to identify potential hazards. Predicting the consequences of global change scenarios on migrant species requires (i) reconciliation of empirical and theoretical studies of avian flight physiology; (ii) an understanding of the effects of food quality, toxicants and disease on migrant performance; and (iii) mechanistic models that integrate abiotic and biotic factors to predict migratory behaviour. Critically, a multi-dimensional concept of vitality would greatly facilitate evaluation of the impact of various global change processes on the population dynamics of migratory birds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Habitat use can influence individual performance in a wide range of animals, either immediately or through carry-over effects in subsequent seasons. Given that many animal species also show consistent individual differences in reproductive success, it seems plausible that individuals may have consistent patterns of habitat use representing individual specializations, with concomitant fitness consequences.

2. Stable-carbon isotope ratios from a range of tissues were used to discern individual consistency in habitat use along a terrestrial–aquatic gradient in a long-distance migrant, the Bewick’s swan (Cygnus columbianus bewickii). These individual specialisations represented <15% of the isotopic breadth of the population for the majority of individuals and were seen to persist throughout autumn migration and overwintering until aquatic habitats were no longer available.

3. Individual foraging specialisations were then used to demonstrate two consecutive carry-over effects associated with macroscale habitat segregation: consequences of breeding season processes for autumn habitat use; and consequences of autumn habitat use for future reproductive success. Adults that were successful breeders in the year of capture used terrestrial habitats significantly more than adults that were not successful, revealing a substantial cost of reproduction and extended parental care. Use of aquatic habitats during autumn was, however, associated with increased body condition prior to spring migration; and increased subsequent breeding success in adults that had been unsuccessful the year before. Yet adults that were successful breeders in the year of capture remained the most likely to be successful the following year, despite their use of terrestrial habitats.

4. Our results uniquely demonstrate not only individual foraging specializations throughout the migration period, but also that processes during breeding and autumn migration, mediated by individual consistency, may play a fundamental role in the population dynamics of long-distance migrants. These findings, therefore, highlight the importance of long-term consistency to our understanding of habitat function, interindividual differences in fitness, population dynamics and the evolution of migratory strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most species of long-distance migratory birds put on energy stores to fuel their travels. However, recent studies have highlighted the potential costs associated with carrying too much fuel, either through increased predation risk or decreased flight efficiency. Consequently, it is now widely accepted that migratory birds should carry optimal rather than maximum fuel loads. Information from 372 garganey (Anas querquedula) ringed and recaptured at least once during the same spring in the Camargue, southern France, was used to document fuelling rates of individual ducks in relation to environmental variation and individual variation in condition. On average, garganey added very little fuel stores in the Camargue (mean gain per day = 0.33 g, less than 0.5% of mean body-mass in total over an average stay of 5 days). Fuelling rates were negatively correlated with body mass at capture, but it cannot be excluded that this pattern was a statistical artefact. Given their body-mass at ringing, garganey could potentially still fly long distances when they stop in the Camargue. It is therefore likely that the aim of their stay in southern France is more for resting than refuelling, a finding that may have implications for the proper management of stop-over sites.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

1. Long-distance dispersal (LDD) is important in plants of dynamic and ephemeral habitats. For plants of dynamic wetland habitats, waterfowl are generally considered to be important LDD vectors. However, in comparison to the internal (endozoochorous) dispersal of terrestrial plants by birds, endozoochorous dispersal of wetland plants by waterfowl has received little attention. We quantified the capacity for endozoochorous dispersal of wetland plants by waterfowl and identified the mechanisms underlying successful dispersal, by comparing the dispersal capacities of a large number of wetland plant species.

2. We selected 23 common plant species from dynamic wetland habitats and measured their seed characteristics. We fed seeds of all species to mallards (Anas platyrhynchos), a common and highly omnivorous duck species, and quantified seed gut survival, gut passage speed and subsequent germination. We then used a simple model to calculate seed dispersal distances.

3. In total 21 of the 23 species can be dispersed by mallards, with intact seed retrieval and subsequent successful germination of up to 32% of the ingested seeds. The species that pass fastest through the digestive tract of the mallards are retrieved in the greatest numbers (up to 54%) and germinate best (up to 87%). These are the species with the smallest seeds. Seed coat thickness plays only a minor role in determining intact passage through the mallard gut, but determines if ingestion enhances or reduces germination in comparison to control seeds.

4. Model calculations estimate that whereas the largest seeds can hardly be dispersed by mallards, most seeds can be dispersed up to 780 km, and the smallest seeds up to 3000 km, by mallards during migration.

5. Synthesis. This study demonstrates the mechanism underlying successful endozoochorous dispersal of wetland plant seeds by mallards: small seed size promotes rapid, and hence intact and viable, passage through the mallard gut. Mallards can disperse wetland plant seeds of all but the largest-seeded species successfully in relatively large numbers (up to 32% of ingested seeds) over long distances (up to thousands of kilometres) and are therefore important dispersal vectors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

'Long distance' showcases 14 artists who choose to live in country victoria and use their local environment for inspiration

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Long-distance migrations are among the wonders of the natural world, but this multi-taxon review shows that the characteristics of species that undertake such movements appear to make them particularly vulnerable to detrimental impacts of climate change. Migrants are key components of biological systems in high latitude regions, where the speed and magnitude of climate change impacts are greatest. They also rely on highly productive seasonal habitats, including wetlands and ocean upwellings that, with climate change, may become less food-rich and predictable in space and time. While migrants are adapted to adjust their behaviour with annual changes in the weather, the decoupling of climatic variables between geographically separate breeding and non-breeding grounds is beginning to result in mistimed migration. Furthermore, human land-use and activity patterns will constrain the ability of many species to modify their migratory routes and may increase the stress induced by climate change. Adapting conservation strategies for migrants in the light of climate change will require substantial shifts in site designation policies, flexibility of management strategies and the integration of forward planning for both people and wildlife. While adaptation to changes may be feasible for some terrestrial systems, wildlife in the marine ecosystem may be more dependent on the degree of climate change mitigation that is achievable.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Wildlife pathogens can alter host fitness. Low pathogenic avian influenza virus (LPAIV) infection is thought to have negligible impacts on wild birds; however, effects of infection in free-living birds are largely unstudied. We investigated the extent to which LPAIV infection and shedding were associated with body condition and immune status in free-living mallards (Anas platyrhynchos), a partially migratory key LPAIV host species. We sampled mallards throughout the species' annual autumn LPAIV infection peak, and we classified individuals according to age, sex, and migratory strategy (based on stable hydrogen isotope analysis) when analyzing data on body mass and five indices of immune status. Body mass was similar for LPAIV-infected and noninfected birds. The degree of virus shedding from the cloaca and oropharynx was not associated with body mass. LPAIV infection and shedding were not associated with natural antibody (NAbs) and complement titers (first lines of defense against infections), concentrations of the acute phase protein haptoglobin (Hp), ratios of heterophils to lymphocytes (H:L ratio), and avian influenza virus (AIV)-specific antibody concentrations. NAbs titers were higher in LPAIV-infected males and local (i.e., short distance) migrants than in infected females and distant (i.e., long distance) migrants. Hp concentrations were higher in LPAIV-infected juveniles and females compared to infected adults and males. NAbs, complement, and Hp levels were lower in LPAIV-infected mallards in early autumn. Our study demonstrates weak associations between infection with and shedding of LPAIV and the body condition and immune status of free-living mallards. These results may support the role of mallards as asymptomatic carriers of LPAIV and raise questions about possible coevolution between virus and host.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The basal metabolic rate (BMR) of Old World long-distance-migrant shorebirds has been found to vary along their migration route. On average, BMR is highest in the Arctic at the start of fall migration, intermediate at temperate latitudes, and lowest on the tropical wintering grounds. As a test of the generality of this pattern, we measured the BMR of one adult and 44 juvenile shorebirds of 10 species (1-18 individuals of each species, body-mass range 19-94 g) during the first part of their southward migration in the Canadian Arctic (68-76°N). The interspecific relationship between BMR and body mass was almost identical to that found for juvenile shorebirds in the Eurasian Arctic (5 species), although only one species appeared in both data sets. We conclude that high BMR of shorebirds in the Arctic is a circumpolar phenomenon. The most likely explanation is that the high BMR reflects physiological adaptations to low ambient temperatures. Whether the BMR of New World shorebirds drops during southward migration remains to be investigated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

UNLABELLED: Individuals who are involved in explosive sport types, such as 100-m sprints and long jump, have greater bone density, leg muscle size, jumping height and grip strength than individuals involved in long-distance running. INTRODUCTION: The purpose of this study is to examine the relationship between different types of physical activity with bone, lean mass and neuromuscular performance in older individuals. METHODS: We examined short- (n = 50), middle- (n = 19) and long-distance (n = 109) athletes at the 15th European Masters Championships in Poznań, Poland. Dual X-ray absorptiometry was used to measure areal bone mineral density (aBMD) and lean tissue mass. Maximal countermovement jump, multiple one-leg hopping and maximal grip force tests were performed. RESULTS: Short-distance athletes showed significantly higher aBMD at the legs, hip, lumbar spine and trunk compared to long-distance athletes (p ≤ 0.0012). Countermovement jump performance, hop force, grip force, leg lean mass and arm lean mass were greater in short-distance athletes (p ≤ 0.027). A similar pattern was seen in middle-distance athletes who typically showed higher aBMD and better neuromuscular performance than long-distance athletes, but lower in magnitude than short-distance athletes. In all athletes, aBMD was the same or higher than the expected age-adjusted population mean at the lumbar spine, hip and whole body. This effect was greater in the short- and middle-distance athletes. CONCLUSIONS: The stepwise relation between short-, middle- and long-distance athletes on bone suggests that the higher-impact loading protocols in short-distance disciplines are more effective in promoting aBMD. The regional effect on bone, with the differences between the groups being most marked at load-bearing regions (legs, hip, spine and trunk) rather than non-load-bearing regions, is further evidence in support of the idea that bone adaptation to exercise is dependent upon the local loading environment, rather than as part of a systemic effect.