149 resultados para LARGE-STRAIN DEFORMATION


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electroactive polymers have attracted considerable attention in recent years due to their sensing and actuating properties which make them a material of choice for a wide range of applications including sensors, biomimetic robots, and biomedical micro devices. This paper presents an effective modeling strategy for nonlinear large deformation (small strains and moderate rotations) dynamic analysis of polymer actuators. Considering that the complicated electro-chemo-mechanical dynamics of these actuators is a drawback for their application in functional devices, establishing a mathematical model which can effectively predict the actuator's dynamic behavior can be of paramount importance. To effectively predict the actuator's dynamic behavior, a comprehensive mathematical model is proposed correlating the input voltage and the output bending displacement of polymer actuators. The proposed model, which is based on the rigid finite element (RFE) method, consists of two parts, namely electrical and mechanical models. The former is comprised of a ladder network of discrete resistive-capacitive components similar to the network used to model transmission lines, while the latter describes the actuator as a system of rigid links connected by spring-damping elements (sdes). Both electrical and mechanical components are validated through experimental results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present work has investigated the evolution of microbands (MBs) and their interaction with strain-induced NbC precipitates during uniaxial compression of a model austenitic Fe-30Ni-Nb steel at 925 °C. The (1 1 0) fibre grains, both without and with copious amounts of precipitates, contained up to large strains crystallographic MBs aligned close to the highly stressed {1 1 1} slip planes having large Schmid factors. The MBs thus maintained their crystallographic character during straining, through continuously rearranging themselves, and did not follow the macroscopically imposed rigid body rotation. During double-pass deformation, fine NbC particles formed at short inter-pass holding remained strongly pinned at small reloading strains and appeared to be dragged by rearranging MB walls. With increasing reloading strain, the fine precipitates became progressively released from the above walls. During reloading after increased holding time, the coarsened particles tended with their increased size to become increasingly detached from the MB walls already at a small strain. The precipitate-free MB wall segments rearranged during straining to maintain their crystallographic alignment, while the detached precipitates followed the sample shape change and rotated towards the compression plane. The MB wall rearrangement generally occurred through cooperative migration of the corresponding dislocation networks.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present work was aimed at a detailed investigation of the orientation dependence of the microstructure characteristics in a Fe-30Ni-Nb austenitic model steel subjected to hot uniaxial compression at 1198 K (925 °C) at a strain rate of 1 s−1 to several strain levels up to 1.0. The quantification of the substructure evolution as a function of strain was performed for the stable 〈011〉 oriented grains. Other grain orientations were also investigated in detail at a strain of 0.2. The 〈110〉 oriented grains contained self-screening arrays of “microbands” (MBs) aligned with high Schmid factor {111} slip planes. The MB crystallographic alignment was largely maintained up to a strain of 1.0, which suggests that the corresponding boundaries kept continuously rearranging themselves during straining and did not follow the sample shape change. The mean MB spacing decreased and misorientation angle increased with strain towards saturation, indicating the operation of the “repolygonization” dynamic recovery mechanism. The non-〈011〉 oriented grains displayed a strong tendency to split during deformation into deformation bands having alternating orientations and being mutually rotated by large angles. The bands were separated by transition regions comprising arrays of closely spaced, extended sub-boundaries collectively accommodating large misorientations across very small distances.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The austenite and ferrite microstructure evolution and softening mechanisms have been investigated in a 21Cr-10Ni-3Mo duplex stainless steel, containing about 60% austenite, deformed in torsion at 1200°C using a strain rate of 0.7 s-1. The above experimental conditions led to the formation of a small volume fraction of new austenite grains through discontinuous dynamic recrystallization (DDRX), which could not account for the observed large softening on the flow curve. DDRX grains mainly formed through the strain-induced migration of the pre-existing austenite grain boundaries, known to dominate in single-phase austenite, complemented by subgrain growth in the interface regions with ferrite. A significant portion of austenite dynamic softening has been attributed to the large-scale subgrain coalescence, the extent of which increased with strain, which seems to have contributed substantially to the observed flow stress decrease. The above process thus appears to represent an alternative mode of austenite dynamic softening to the classical DDRX in the duplex austenite/ferrite microstructure, characterised by limited availability of the pre-existing austenite/austenite high-angle boundaries, deformed at a high temperature. The softening mechanism within ferrite has been classified as "continuous DRX", characterised by a gradual increase in misorientations between neighbouring subgrains with strain and resulting in the progressive conversion of subgrains into "crystallites" bounded partly by low-angle and partly by large-angle boundaries.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hot deformation behavior and microstructure evolution of a coarse grain metastable beta titanium alloy (Ti-5Al-5Mo-5V-3Cr) was investigated using uniaxial compression testing followed by a subsequent beta annealing treatment. Compression testing was carried out at 720 °C and strain rates between 0.001-10 s-1 on samples with beta annealed condition and aged microstructure containing high volume fraction of relatively large alpha precipitates. The peak load of the aged samples are higher than the non-aged specimens but they show rather similar steady state flow stress. The subsequent beta annealing treatment on the compressed aged samples leads to breaking down the ingot microstructure and formation of a fully recrystallized beta phase with massive grain refinement (order of millimeter to ∼100 μm). However, after annealing such grain refinement is not seen for the non-aged samples except at high strain rates that showed partial and local recrystallization.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In a previous paper, a simple model was developed to extend the application of the traditional flower pattern diagram as a design tool for roll forming. The position of a point on the strip as it passes through each set of rolls can be identified as a series of points in the two-dimensional flower pattern diagram. In three dimensions, these points will lie on a non-circular cylindrical surface having its axis parallel to the machine axis. Assuming that these points are joined by a smooth curve, the forming path of a point on the strip as it passes through the roll forming process can be obtained as a plane curve on the plane development of this surface. It was shown in previous work that the longitudinal membrane strain and, in certain cases, local curvature of the sheet are functions of the slope of this plane curve. In this work, the strains on both surfaces at the edge of a strip in the forming of a simple V-channel are measured using strain gauges. It is shown that near the point of contact with the rolls, the strains differ by nearly an order of magnitude from those determined from the simple model which assumes that the trajectory is a smooth curve. A modification of the forming path is obtained from the measured bending strains. Although the changes in displacement are small, the peak values of strain near the point of roll contact are large and a consequence of highly localised changes in the forming path as the strip passes over each roll. Measurement of this perturbation in the forming path is difficult as the region is obscured by the forming rolls. The technique described here permits the reconstruction of this path and identifies a new area of investigation of longitudinal strains in roll forming. These are often associated with shape defects such as bow, warping and end flare.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on the results of a study aimed at identifying the relative influence of generic and job-specific stressors experienced by a cohort of Australian managers. The results of a regression analysis revealed that both the generic components of the job strain model (JSM) and job-specific stressors were predictive of the strain experienced by participants. However, when looking at the total amount of variance that is explained by the predictor variables, the combined influence of job demand, job control and social support contributed 98 per cent of the explained variance in job satisfaction and 90 per cent of the variance in psychological health. The large amount of variance explained by the JSM suggests that this model provides an accurate account of the work characteristics that contribute to the strain experienced by managers and no augmentation is needed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of hot working flow stress with strain is examined in torsion, uniaxial compression and channel die compression. The flow stress was found to be strongly dependent on texture and deformation mode. At low strains this dependency accounted for a difference in flow stress of up to a factor of two. At higher strains the influence of texture and deformation mode was less marked. The stresses corresponding to an equivalent strain of 0.5 were modelled using a power law expression with an activation energy of 147 kJ/mol and a strain rate exponent of 0.15. The influence of texture and deformation mode on flow stress is rationalised in terms of the influence of prismatic slip, twinning and dynamic recrystallisation on deformation stress and structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A plain carbon steel was deformed using a hot torsion deformation simulator. A schedule known to produce strain-induced ferrite was used with the strain interrupted for increasing intervals of time to determine the effect of an isothermal hold on the final microstructure. Microscopy and electron back-scattered diffraction (EBSD) were used to analyse the changes that occurred in the partially transformed microstructure during the hold and the subsequent applied strain. The strain-induced ferrite coarsened during the hold and this coarsened ferrite was refined during the second deformation. These results were compared to those obtained for a different plain carbon steel deformed in single pass rolling close to the Ar3 temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Of considerable importance to the generation of ultrafine microstructures is the development of high misorientations. The present work examines the effect of the crystallographic rotation field in simple shear upon the evolution of misorientation during plastic working. A series of Taylor simulations are presented and it is shown that the rotation field is such that small differences in orientation in the region of the main torsion texture components are considerably increased with the application of shear strain. This did not occur in simulations of rolling. The torsion simulations compare favourably with the nature of the misorientations evident in hot worked 1050 Al and Ti-IF steel. It is concluded that shear deformation, by its nature, facilitates the generation of higher misorientations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hot torsion testing of a C–Mn–V steel was used to study the evolution of  ultrafine ferrite (UFF) formation by dynamic strain-induced transformation (DSIT) in conjunction with air-cooling for two prior austenite grain sizes. This study evaluated not only the evolution of DSIT ferrite during straining, but also the grain growth behaviour of DSIT ferrite grains during post-deformation cooling. For both austenite grain sizes, the DSIT ferrite initially nucleated on/or near prior austenite grain boundaries at an early stage of transformation followed by the grain interiors. The prior austenite grain size affected the distribution of DSIT ferrite nucleation sites at an early stage of transformation and the subsequent coarsening behaviour of the grain boundary (GB) and the intragranular ferrite (IG) grains during post-deformation cooling. For the fine prior austenite grain size, the distribution of DSIT ferrite grains was more homogenous compared with the coarse austenite and the coarsening occurred not only in the GB ferrite grains but also in the IG ferrite grains. However, the ferrite coarsening mostly occurred for the IG ferrite rather than the GB ferrite grains in the coarse austenite. The result suggests that normal grain growth occurred during the overall transformation in the GB ferrite grains for the coarse initial austenite grain size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of grain size on the warm deformation behaviour of a titanium stabilized interstitial free (IF) steel was investigated using hot torsion. The initial work hardening regime is followed by the development of a broad stress peak after which work softening occurs. The hypothetical saturation stress (Estrin–Mecking model) and the stress at final strain were relatively insensitive to grain size. However, the strain to the peak stress was strongly dependent on the grain size at low values of the Zener–Hollomon parameter. A simple phenomenological approach, using a combined Estrin–Mecking model and an Avrami type equation, was used to model the flow curves. The hypothetical saturation stress, the stress at final strain and the strain to peak stress were modelled using three different hyperbolic sine laws. A comparison with independent data from the literature shows that the apparent activation energy of deformation determined in this work (Q=372 kJ/mol) can be used to rationalize the steady-state stress in compression data found in the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A C–Mn–V steel was used to study ultrafine ferrite formation (1–3 μm) through dynamic strain-induced transformation (DSIT) using hot torsion experiments. A systematic study determined the critical strain for the start of DSIT (C,DSIT), although this may not lead to a fully ultrafine microstructure. Therefore, the strain to produce an ultrafine ferrite (UFF) as final microstructure (C,UFF) during deformation was also determined. In addition, the effect of thermomechanical parameters such as deformation temperature, prior austenite grain size, strain rate and cooling rate on C,DSIT and C,UFF has been evaluated. DSIT ferrite nucleated on prior austenite grain boundaries at an early stage of straining followed by intragranular nucleation at higher strains. The prior austenite grain size affected the distribution of DSIT ferrite nucleation sites at an early stage of transformation and the subsequent coarsening behaviour of the grain boundary and intragranular ferrite grains during post-deformation cooling. Also, C,DSIT and C,UFF increased with an increase in the prior austenite grain size and deformation temperature. The post-deformation cooling had a strong effect not only on C,UFF but also the UFF microstructure (i.e. final ferrite grain size and second phase characteristics).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is now considerable interest in the development of ultrafine grained steels with an average grain size of the order of 1µm. One of the methods with currently the greatest industrial interest is by dynamic strain induced transformation from austenite to ferrite. This involves deformation below the
equilibrium transformation temperature so that transformation occurs during the deformation. However, large strains are required to completely transform the microstructure during deformation. It is potentially possible to activate transformation during deformation then continue transformation
during subsequent cooling. It is shown that there are two critical strains: the first is where dynamic transformation commences and the second is the minimum strain for a fully ultrafine final microstructure after cooling to room temperature. The deformation and potential role of dynamic
recrystallization of the dynamically formed ferrite is also considered. Overall it is clear that for full industrial exploitation there is a need to understand and exploit the competing issues of nucleation, growth and recrystallization of the ferrite by both dynamic and static processes.