86 resultados para John R. Dienhart


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effects of climate change on plant and animal populations are widespread and documented for many species in many areas of the world. However, projections of climate impacts will require a better mechanistic understanding of ecological and behavioral responses to climate change and climate variation. For vertebrate animals, there is an absence of whole-system manipulative experiments that express natural variation in predator and prey behaviors. Here we investigate the effect of elevated water temperature on the physiology, behavior, growth, and survival of fish populations in a multiple whole-lake experiment, by using 17 lake-years of data collected over 2 years with differing average temperatures. We found that elevated temperatures in excess of the optimum reduced the scope for growth through reduced maximum consumption and increased metabolism in young rainbow trout, Oncorhynchus mykiss. Increased metabolism at high temperatures resulted in increased feeding activity (consumption) by individuals to compensate and maintain growth rates similar to that observed at cooler (optimum) temperatures. However, greater feeding activity rates resulted in greater vulnerability to predators that reduced survival to only half that of the cooler year. Our work therefore identifies temperature-dependent physiology and compensatory feeding behavior as proximate mechanisms for substantial climate-induced mortality in fish populations at the scale of entire populations and waterbodies. r />

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Given limited food, prey fishes in a temperate climate must take risks to acquire sufficient reserves for winter and/or to outgrow vulnerability to predation. However, how can we distinguish which selective pressure promotes risk-taking when larger body size is always beneficial? To address this question, we examined patterns of energy allocation in populations of age-0 trout to determine if greater risk-taking corresponds with energy allocation to lipids or to somatic growth. Trout achieved maximum growth rates in all lakes and allocated nearly all of their acquired energy to somatic growth when small in early summer. However, trout in low-food lakes took greater risks to achieve this maximal growth, and therefore incurred high mortality. By late summer, age-0 trout allocated considerable energy to lipids and used previously risky habitats in all lakes. These results indicate that: (i) the size-dependent risk of predation (which is independent of behaviour) promotes risk-taking behaviour of age-0 trout to increase growth and minimize time spent in vulnerable sizes; and (ii) the physiology of energy allocation and behaviour interact to mediate growth/mortality trade-offs for young animals at risk of predation and starvation. r />

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Domesticated (farm) salmonid fishes display an increased willingness to accept risk while foraging, and achieve high growth rates not observed in nature. Theory predicts that elevated growth rates in domestic salmonids will result in greater risk–taking to access abundant food, but low survival in the presence of predators. In replicated whole–lake experiments, we observed that domestic trout (selected for high growth rates) took greater risks while foraging and grew faster than a wild strain. However, survival consequences for greater growth rates depended upon the predation environment. Domestic trout experienced greater survival when risk was low, but lower survival when risk was high. This suggests that animals with high intrinsic growth rates are selected against in populations with abundant predators, explaining the absence of such phenotypes in nature. This is, to our knowledge, the first large–scale field experiment to directly test this theory and simultaneously quantify the initial invasibility of domestic salmonid strains that escape into the wild from aquaculture operations, and the ecological conditions affecting their survival. r />

Relevância:

80.00% 80.00%

Publicador:

Resumo:

1. The importance of body size and growth rate in ecological interactions is widely recognized, and both are frequently used as surrogates for fitness. However, if there are significant costs associated with rapid growth rates then its fitness benefits may be questioned. r />r />2. In replicated whole-lake experiments, we show that a domestic strain of rainbow trout (artificially selected for maximum intrinsic growth rate) use productive but risky habitats more than wild trout. Consequently, domestic trout grow faster in all situations, experience greater survival in the absence of predators, but have lower survival in the presence of predators. Therefore, rapid growth rates are selected against due to increased foraging effort (or conversely, lower antipredator behaviour) that increases vulnerability to predators. In other words, there is a behaviourally mediated trade-off between growth and mortality rates. r />r />3. Whereas rapid growth is beneficial in many ecological interactions, our results show the mortality costs of achieving it are large in the presence of predators, which can help explain the absence of an average phenotype with maximized growth rates in nature. r />

Relevância:

80.00% 80.00%

Publicador:

Resumo:

1. Whereas the effects of density-dependent growth and survival on population dynamics are well-known, mechanisms that give rise to density dependence in animal populations are not well understood. We tested the hypothesis that the trade-off between growth and mortality rates is mediated by foraging activity and habitat use. Thus, if depletion of food by prey is density-dependent, and leads to greater foraging activity and risky habitat use, then visibility and encounter rates with predators must also increase. r />r />2. We tested this hypothesis by experimentally manipulating the density of young rainbow trout (Oncorhynchus mykiss) at risk of cannibalism, in a replicated single-factor experiment using eight small lakes, during an entire growing season. r />r />3. We found no evidence for density-dependent depletion of daphnid food in the near-shore refuge where most age-0 trout resided. Nonetheless, the proportion of time spent moving by individual age-0 trout, the proportion of individuals continuously active, and use of deeper habitats was greater in high density populations than in low density populations. Differences in food abundance among lakes had no effect on measures of activity or habitat use. r />r />4. Mortality of age-0 trout over the growing season was higher in high density populations, and in lakes with lower daphnid food abundance. Therefore, population-level mortality of age-0 trout is linked to greater activity and use of risky habitats by individuals at high densities. We suspect that food resources were depleted at small spatial and temporal scales not detected by our plankton sampling in the high density treatment, because food-dependent activity and habitat use by age-0 trout occurs in our lakes when food abundance is experimentally manipulated

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent research suggests that the behavior of individuals under risk of predation could be a key link between individual behavior and population and community dynamics. Yet existing theory remains largely untested at large spatial and temporal scales. We manipulated food available to age-0 rainbow trout while at risk of cannibalism, in a replicated factorial whole-lake experiment, to test whether the trade-off between growth and mortality rates is mediated by foraging activity by young fish under predation risk. We found that this trade-off exists for young fish at the whole-system scale, and that food-dependent behavioral variation has large mortality consequences. In high-food lakes, age-0 trout spent less time moving, fewer individuals swam continuously, and those swimming continuously swam at slower speeds relative to those in low-food lakes. Age-0 trout also used deep, risky habitats less when food was abundant. This lower activity, combined with avoidance of risky habitats, coincided with 68% higher survival in high-food lakes. If general, this trade-off may be a key mechanism linking individual behavior to population-level processes in size-structured populations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A washer-free Nb nanoSQUID has been developed for measuring magnetization changes from nanoscale objects. The SQUID loop is etched into a 250 nm wide Au/Nb bilayer track and the diameter of the SQUID hole is ~ 70 nm. In the presence of a magnetic field perpendicular to the plane of the SQUID, vortex penetration into the 250 nm wide track can be observed via the critical current–applied field characteristic and the value at which vortex first penetrates is consistent with the theoretical prediction. Upon removing the applied field, the penetrated vortices escape the track and the critical current at zero field is restored.r />

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In a replicated whole-lake experiment, we (a) tested for the existence of a flexible habitat shift in response to predator presence in age-0 rainbow trout (Oncorhynchus mykiss) at risk of cannibalism and (b) evaluated the population-level consequences of habitat shifts in terms of growth and survival over their first growing season. Daphnid food and adult trout predators were substantially more abundant in pelagic than in littoral habitats. Age-0 trout used all habitats in populations without adult trout predators, whereas age-0 trout were observed only in the less profitable littoral habitat in populations with adult trout. Consequently, mean fall mass of age-0 trout in the presence of predators was almost half that observed in populations without adult trout. Despite the shift in habitat use, age-0 trout experienced 90% mortality when adult trout predators were present, in comparison to only 36% mortality when absent. We conclude that the commonly observed habitat shifts by fish at risk of predation, observed at smaller scales, do in fact occur at the whole-system scale over long time intervals. These results suggest that fish are able to perceive risk at large spatial scales and thus take advantage of profitable (but normally risky) habitats when predators are absent, or move to less profitable refuge habitats when predators are present.r />

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Several empirical studies have shown that variation in daily energy expenditure (DEE) and resting metabolic rate (RMR) is influenced by environmental and individual factors, but whether these shared influences are responsible for, or independent of, relationships between DEE and RMR remains unknown. The objectives of this study were to (i) simultaneously evaluate the effects of environmental and individual variables on DEE and RMR in free-ranging eastern chipmunks (Tamias striatus) and (ii) quantify the correlation between DEE and RMR before and after controlling for common sources of variation. We found that the influence of individual factors on DEE and RMR is most often shared, whereas the influence of environmental factors tends to be distinct. Both raw and mass-adjusted DEE and RMR were significantly correlated, but this correlation vanished after accounting for the shared effect of reproduction on both traits. However, within reproductive individuals, DEE and RMR remained positively correlated after accounting for all other significant covariates. The ratio of DEE to RMR was significantly higher during reproduction than at other times of the year and was negatively correlated with ambient temperature. DEE and RMR appear to be inherently correlated during reproduction, but this correlation does not persist during other, less energy-demanding periods of the annual cycle.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The growth/survival trade-off is a fundamental aspect of life-history evolution that is often explained by the direct energetic requirement for growth that cannot be allocated into maintenance. However, there is currently no empirical consensus on whether fast-growing individuals have higher resting metabolic rates at thermoneutrality (RMRt) than slow growers. Moreover, the link between growth rate and daily energy expenditure (DEE) has never been tested in a wild endotherm. We assessed the energetic and survival costs of growth in juvenile eastern chipmunks (Tamias striatus) during a year of low food abundance by quantifying post-emergent growth rate (n = 88), RMRt (n = 66), DEE (n = 20), and overwinter survival. Both RMRt and DEE were significantly and positively related to growth rate. The effect size was stronger for DEE than RMRt, suggesting that the energy cost of growth in wild animals is more likely to be related to the maintenance of a higher foraging rate (included in DEE) than to tissue accretion (included in RMRt). Fast growers were significantly less likely to survive the following winter compared to slow growers. Juveniles with high or low RMRt were less likely to survive winter than juveniles with intermediate RMRt. In contrast, DEE was unrelated to survival. In addition, botfly parasitism simultaneously decreased growth rate and survival, suggesting that the energetic budget of juveniles was restricted by the simultaneous costs of growth and parasitism. Although the biology of the species (seed-storing hibernator) and the context of our study (constraining environmental conditions) were ideally combined to reveal a direct relationship between current use of energy and future availability, it remains unclear whether the energetic cost of growth was directly responsible for reduced survival.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In response to handling or other acute stressors, most mammals, including humans, experience a temporary rise in body temperature (T b). Although this stress-induced rise in T b has been extensively studied on model organisms under controlled environments, individual variation in this interesting phenomenon has not been examined in the field. We investigated the stress-induced rise in T b in free-ranging eastern chipmunks (Tamias striatus) to determine first if it is repeatable. We predicted that the stress-induced rise in T b should be positively correlated to factors affecting heat production and heat dissipation, including ambient temperature (T a), body mass (M b), and field metabolic rate (FMR). Over two summers, we recorded both T b within the first minute of handling time (T b1) and after 5 min of handling time (T b5) 294 times on 140 individuals. The mean ∆T b (T b5 – T b1) during this short interval was 0.30 ± 0.02°C, confirming that the stress-induced rise in T b occurs in chipmunks. Consistent differences among individuals accounted for 40% of the total variation in ∆T b (i.e. the stress-induced rise in T b is significantly repeatable). We also found that the stress-induced rise in T b was positively correlated to T a, M b, and mass-adjusted FMR. These results confirm that individuals consistently differ in their expression of the stress-induced rise in T b and that the extent of its expression is affected by factors related to heat production and dissipation. We highlight some research constraints and opportunities related to the integration of this laboratory paradigm into physiological and evolutionary ecology.